"\\text {Let a is a constant, then}\\\\\nf(t)=a(t+10)^{-2}, 0<t<40\\\\\na\\int _0^{40}\\left(t+10\\right)^{-2}dt=1\\\\\na\\left[-(t+10\\right)^{-1}]^{40}_{0}=1\\\\\n-a(50^{-1}-10^{-1})=1\\\\\n-a(\\frac{-2}{25})=1\\\\\na=\\frac{25}{2}\\\\\n\\therefore f(t)=f(t)=\\frac{25}{2}(t+10)^{-2}, 0<t<40\\\\\nP(t<10)=\\frac{25}{2}\\int _0^{10}\\left(t+10\\right)^{-2}dt\\\\\n=\\frac{25}{2}\\left[-(t+10\\right)^{-1}]^{10}_{0}\\\\\n=\\frac{-25}{2}(20^{-1}-10^{-1})\\\\\n=\\frac{-25}{2}\\times\\frac{-1}{20}\\\\\n=\\frac{5}{8}"
Comments
Leave a comment