Let X= the number of bulls that the archer hits: X∼Bin(n,p)
The binomial mass function
p(x)=P(X=x)=(xn)px(1−p)n−x Given p=1/32,n=96
(a) The probability mass function of the number of bulls that the archer hits.
p(x)=P(X=x)=(x96)(321)x(1−321)96−x (b) Give an approximation for the probability of the archer hitting no more than one bull
P(X≤1)=P(X=0)+P(X=1)=
=(096)(321)0(1−321)96−0+
+(196)(321)1(1−321)96−1=
=(3231)95(32127)≈0.19443154
Poisson Approximation to the Binomial
n=96>50>20,p=321=0.03125,np=3<5
λ=np=3
P(X=0)≈0!e−330=e−3
P(X=1)≈1!e−331=3e−3
P(X≤1)=P(X=0)+P(X=1)≈
≈e−3+3e−3=4e−3≈0.19914827
Comments