"f(x)=\\alpha" |x|10.
As"\\int_{0}^{+\\infty} f(t) = 1" we can find "\\alpha".
"\\int_{0}^{+\\infty} f(x) = \\alpha\\int_{2}^{4} x^{10}= \\alpha \\frac{x^{11}}{11}\\bigg|^{4}_{2}"
"=\\alpha \\frac{x^{11}}{11} |_2^4=\\frac{11}{4^{11}-2^{11}}\n\\newline \n\\alpha=\\frac{11}{4^{11}-2^{11}}"
"EX=\\int_{2}^{4}xf(x)=\\alpha \\int_{2}^{4} x^{11}dx = \n\\newline\n=\\{ \\alpha \\frac{x^{12}}{12} \\} \\bigg|_2^4=\\alpha \\frac{(4^{12}-2^{12})}{12}"
"EX = \\frac{11}{12} \\frac{4^{12}-2^{12}}{4^{11}-2^{11}} = \\frac{11}{6} \\frac{2^{12}-1}{2^{11}-1}"
"Answer: \\frac{11}{6} \\frac{2^{12}-1}{2^{11}-1}"
Comments
Leave a comment