"f(t)=\\alpha \\frac{1}{(t+10)^2}", "t \\in [0,40]" for some real "\\alpha."
"f(t)" is density, so "\\int_{-\\infty}^{+\\infty} f(t)dt =1".
Find "\\alpha":
"\\int_{-\\infty}^{+\\infty} f(t) dt= \\alpha\\int_{0}^{40} (t+10)^{-2}dt=\\{ -\\alpha (t+10)^{-1}\\} \\bigg|^{40}_{0}"
"=(-\\alpha(40+10)^{-1}) - (-\\alpha(0+10)^{-1})=-\\alpha\/50 + \\alpha\/10=2\\alpha\/25"
"2\\alpha\/25=1 => \\alpha=25\/2."
Probability the lifetime between 0 and 10 years is "\\int_{0}^{10} f(t)dt.\\\\""\\\\ \\text{Then} \\int_{0}^{10} f(t)dt = \\alpha\\int_{0}^{10} (t+10)^{-2} dt"
"=25\/2\\cdot\\int_0^{10}(t+10)^{-2}dt=25\/2\\cdot \\{-(t+10)^{-1}\\}\\bigg|_{0}^{10}=25\/2\\cdot(-\\frac{1}{20}-(-\\frac{1}{10}))=\\frac{5}{8}."
Answer: "\\frac{5}{8}."
Comments
Leave a comment