1. We want to find "\\lambda" for the Poisson RV from "P(X=2)=4P(X=4)"
"P(X=2)={e^{-\\lambda}\\lambda^2\\over 2!}=4P(X=4)=4\\cdot{e^{-\\lambda}\\lambda^4\\over 4!}"
"\\lambda^2={4!\\over4\\cdot2!}=3"
"V(X)=\\sigma^2=\\lambda=\\sqrt{3}"
2.
"\\displaystyle\\int_{-\\infin}^{\\infin}f(t)dt=1"
"\\displaystyle\\int_{0}^{40}c(t+10)^2dt=c\\big[{(t+10)^3\\over 3}\\big]\\begin{matrix}\n 40 \\\\\n 0\n\\end{matrix}="
"={c\\over 3}((40+10)^3-(0+10)^3)={124000\\over 3}c=1"
"c={3\\over 124000}"
"P(t<10)=\\displaystyle\\int_{0}^{10}{3\\over 124000}(t+10)^2dt="
"={3\\over 124000}\\big[{(t+10)^3\\over 3}\\big]\\begin{matrix}\n 10 \\\\\n 0\n\\end{matrix}={1\\over 124000}((10+10)^3-(0+10)^3)="
"={7\\over 124}\\approx0.056452"
Comments
Leave a comment