Question #115089
8. A financial analyst has found out that policyholders are four times as likely to file two
claims as to file four claims. If the number of claims filed has a posson distribution,
what is the variance of the number of claims filed.

The lifetime of a machine is continuous on the interval (0, 40) with probability density
function f, where f(t) is proportional to (t + 10)) 2
, and t is the lifetime in years.
Calculate the probability that the lifetime of the machine part is less than 10 years.
Hint: Show that f(t) is legitimate and find the proportionality constant
1
Expert's answer
2020-05-11T13:07:45-0400

1. We want to find λ\lambda for the Poisson RV from P(X=2)=4P(X=4)P(X=2)=4P(X=4)


P(X=k)=eλλkk!P(X=k)={e^{-\lambda}\lambda^k\over k!}

P(X=2)=eλλ22!=4P(X=4)=4eλλ44!P(X=2)={e^{-\lambda}\lambda^2\over 2!}=4P(X=4)=4\cdot{e^{-\lambda}\lambda^4\over 4!}

λ2=4!42!=3\lambda^2={4!\over4\cdot2!}=3

V(X)=σ2=λ=3V(X)=\sigma^2=\lambda=\sqrt{3}


2.


f(t)={c(t+10)2t[0,40]0otherwisef(t) = \begin{cases} c(t+10)^2 & t\in[0,40] \\ 0 &otherwise \end{cases}

f(t)dt=1\displaystyle\int_{-\infin}^{\infin}f(t)dt=1

040c(t+10)2dt=c[(t+10)33]400=\displaystyle\int_{0}^{40}c(t+10)^2dt=c\big[{(t+10)^3\over 3}\big]\begin{matrix} 40 \\ 0 \end{matrix}=

=c3((40+10)3(0+10)3)=1240003c=1={c\over 3}((40+10)^3-(0+10)^3)={124000\over 3}c=1

c=3124000c={3\over 124000}

P(t<10)=0103124000(t+10)2dt=P(t<10)=\displaystyle\int_{0}^{10}{3\over 124000}(t+10)^2dt=

=3124000[(t+10)33]100=1124000((10+10)3(0+10)3)=={3\over 124000}\big[{(t+10)^3\over 3}\big]\begin{matrix} 10 \\ 0 \end{matrix}={1\over 124000}((10+10)^3-(0+10)^3)=

=71240.056452={7\over 124}\approx0.056452

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS