Question 3:
M=men,W=Women,B=person has brown eyes
"P(M)=\\frac{10}{30}=\\frac{1}{3}\\\\\nP(F)=\\frac{20}{30}=\\frac{2}{3}\\\\\nP(B)=\\frac{15}{30}=\\frac{1}{2}\\\\\nP(B|M)=\\frac{5}{10}=\\frac{1}{2}\\\\\nP(B|W)=\\frac{10}{20}=\\frac{1}{2}\\\\"
so, probability that a person chosen at random is a men or brown eyed is"P(M\\cup B)"
"P(B|M)=\\frac{P(M\\cap B)}{P(M)}\\\\\nP(M\\cap B)=P(B|M)P(M)=\\frac{1}{2}*\\frac{1}{3}\\\\\nP(M\\cap B)=\\frac{1}{6}\\\\"
and
"P(M \\cup B)=P(M)+P(B)-P(M\\cap B)\\\\\nP(M \\cup B)=\\frac{1}{3}+\\frac{1}{2}-\\frac{1}{6}\\\\\nP(M \\cup B)=\\frac{2}{3}=0.67\\\\"
probability that a person chosen at random is a men or brown eyed is 0.67
Question 4:
"P(A)=1-P(\\bar{A})=1-\\frac{2}{3}=\\frac{1}{3}\\\\\n\\bold{P(A)=\\frac{1}{3}}"
"P(A \\cup B)=P(A)+P(B)-P(A\\cap B)\\\\\n\\frac{3}{4}=\\frac{1}{3}+P(B)-\\frac{1}{4}\\\\\n\\bold{P(B)=\\frac{2}{3}}"
"P(A\\cap \\bar{B})=P(A)-P(A\\cap B)\\\\\nP(A\\cap \\bar{B})=\\frac{1}{3}-\\frac{1}{4}\\\\\n\\bold{P(A\\cap \\bar{B})=\\frac{1}{12}}\\\\"
Comments
Leave a comment