"Given\\;that\\, \\bar x=500,s=5,n=25\\\\\n(A) P(\\bar x<498)=P(Z<\\frac{498-500}{\\frac{5}{\\sqrt{25}}})\\\\\n=P(Z<-2)=0.5-P(0<Z<2)\\\\\n=0.5-0.4772=0.0228\\\\\n\n (B)P(498<\\bar x<503)=P(-2<Z<\\frac{503-500}{\\frac{5}{\\sqrt{25}}})\\\\\n=P(-2<Z<3)\\\\\n=P(0<Z<2)+P(0<Z<3)\\\\\n=0.4772+0.4987=0.9789\\\\\n\n(C)Let\\; Z_{1}=\\frac{\\bar X-500}{\\frac{5}{\\sqrt{25}}}=\\bar x -500,\\\\\n then,\\\\\n P(Z<Z_{1})=0.90\\\\\n0.5+P(0<Z<Z_{1})=0.9\\\\\nP(0<Z<Z_{1})=0.4\\\\\nZ_{1}=1.29\\\\\n\\therefore 1.29=\\bar X-500\\\\\n\\bar X=501.29\\\\"
Comments
Leave a comment