let X=The life of a compressor manufactured by a company
"\\mu=200months\\\\\n\\lambda=\\frac{1}{\\mu}=\\frac{1}{200}=0.005"
here "X\\thicksim exp(0.005)"
"f(x)= \\begin{cases}\n 0.005e^{(-0.005x)} &\\text{if } x\\ge0 \\\\\n 0 &\\text{if } x<0\n\\end{cases}"
and
"F(x)= \\begin{cases}\n 1-e^{(-0.005x)} &\\text{if } x\\ge0 \\\\\n 0 &\\text{if } x<0\n\\end{cases}"
i)
"P(X<200)=F(200)\\\\\nP(X<200)=1-e^{(-0.005*200)}\\\\\nP(X<200)=0.6321"
probability that the life of a compressor is less than 200 months=0.6321
ii)
"P(100<X<300)=F(300)-F(100)\\\\\nP(100<X<300)=(1-e^{(-0.005*300)})\\\\\n\\hspace{12 em}-(1-e^{(-0.005*100)})\\\\\nP(100<X<300)=0.3834"
probability that the life of a compressor is between 100 months to 25 years=0.3834
Comments
Leave a comment