Find an orthogonal matrix B such that P T A P P^TAP P T A P is diagonal when
A = [ 1 2 2 4 ] A=\begin{bmatrix}
1 & 2 \\
2 & 4
\end{bmatrix} A = [ 1 2 2 4 ] First, the find eigenvalues and eigenvectors
Start from forming a new matrix by subtracting λ \lambda λ from the diagonal entries of the given matrix:
A − λ I = [ 1 − λ 2 2 4 − λ ] A-\lambda I=\begin{bmatrix}
1-\lambda & 2 \\
2 & 4-\lambda
\end{bmatrix} A − λ I = [ 1 − λ 2 2 4 − λ ] Find the determinant of the obtained matrix:
d e t ( A − λ I ) = ∣ 1 − λ 2 2 4 − λ ∣ = det(A-\lambda I)=\begin{vmatrix}
1-\lambda & 2 \\
2 & 4-\lambda
\end{vmatrix}= d e t ( A − λ I ) = ∣ ∣ 1 − λ 2 2 4 − λ ∣ ∣ = = ( 1 − λ ) ( 4 − λ ) − 2 ( 2 ) = λ 2 − 5 λ =(1-\lambda)(4-\lambda)-2(2)=\lambda^2-5\lambda = ( 1 − λ ) ( 4 − λ ) − 2 ( 2 ) = λ 2 − 5 λ This is a characteristic polynomial.
Solve the equation
λ 2 − 5 λ = 0 \lambda^2-5\lambda=0 λ 2 − 5 λ = 0 The roots are:
λ 1 = 5 \lambda_1=5 λ 1 = 5
λ 2 = 0 \lambda_2=0 λ 2 = 0
These are the eigenvalues.
Next, find the eigenvectors.
λ 1 = 5 \lambda_1=5 λ 1 = 5
[ 1 − λ 2 2 4 − λ ] = [ − 4 2 2 − 1 ] \begin{bmatrix}
1-\lambda & 2 \\
2 & 4-\lambda
\end{bmatrix}=\begin{bmatrix}
-4 & 2 \\
2 & -1
\end{bmatrix} [ 1 − λ 2 2 4 − λ ] = [ − 4 2 2 − 1 ] Perform row operations to obtain the rref of the matrix:
R 2 = R 2 + 1 2 R 1 : R_2=R_2+\dfrac{1}{2}R_1: R 2 = R 2 + 2 1 R 1 :
[ − 4 2 0 0 ] \begin{bmatrix}
-4 & 2 \\
0 & 0
\end{bmatrix} [ − 4 0 2 0 ] R 2 = − 1 4 R 1 : R_2=-\dfrac{1}{4}R_1: R 2 = − 4 1 R 1 :
[ 1 − 1 2 0 0 ] \begin{bmatrix}
1& - {1 \over 2}\\
0 & 0
\end{bmatrix} [ 1 0 − 2 1 0 ] Now, solve the matrix equation
[ 1 − 1 2 0 0 ] [ v 1 v 2 ] = [ 0 0 ] \begin{bmatrix}
1& - {1 \over 2}\\
0 & 0
\end{bmatrix}\begin{bmatrix}
v_1\\
v_2
\end{bmatrix}=\begin{bmatrix}
0\\
0
\end{bmatrix} [ 1 0 − 2 1 0 ] [ v 1 v 2 ] = [ 0 0 ] If we take v 2 = t , v_2=t, v 2 = t , then v 1 = 1 2 t , v 2 = t v_1={1 \over2}t, v_2=t v 1 = 2 1 t , v 2 = t
Therefore
v = [ t / 2 t ] = [ 1 / 2 1 ] t \text{v}=\begin{bmatrix}
t/2\\
t
\end{bmatrix}=\begin{bmatrix}
1/2\\
1
\end{bmatrix}t v = [ t /2 t ] = [ 1/2 1 ] t
λ 2 = 0 \lambda_2=0 λ 2 = 0
[ 1 − λ 2 2 4 − λ ] = [ 1 2 2 4 ] \begin{bmatrix}
1-\lambda & 2 \\
2 & 4-\lambda
\end{bmatrix}=\begin{bmatrix}
1 & 2 \\
2 & 4
\end{bmatrix} [ 1 − λ 2 2 4 − λ ] = [ 1 2 2 4 ] Perform row operations to obtain the rref of the matrix:
R 2 = R 2 − ( 2 ) R 1 : R_2=R_2-(2)R_1: R 2 = R 2 − ( 2 ) R 1 :
[ 1 2 0 0 ] \begin{bmatrix}
1 & 2 \\
0 & 0
\end{bmatrix} [ 1 0 2 0 ] Now, solve the matrix equation
[ 1 2 0 0 ] [ v 1 v 2 ] = [ 0 0 ] \begin{bmatrix}
1& 2\\
0 & 0
\end{bmatrix}\begin{bmatrix}
v_1\\
v_2
\end{bmatrix}=\begin{bmatrix}
0\\
0
\end{bmatrix} [ 1 0 2 0 ] [ v 1 v 2 ] = [ 0 0 ] If we take v 2 = t , v_2=t, v 2 = t , then v 1 = − 2 t , v 2 = t v_1=-2t, v_2=t v 1 = − 2 t , v 2 = t .
Therefore
v = [ − 2 t t ] = [ − 2 1 ] t \text{v}=\begin{bmatrix}
-2t\\
t
\end{bmatrix}=\begin{bmatrix}
-2\\
1
\end{bmatrix}t v = [ − 2 t t ] = [ − 2 1 ] t Eigenvalue: 5, eigenvector: [ 1 / 2 1 ] \begin{bmatrix}
1/2\\
1
\end{bmatrix} [ 1/2 1 ]
Eigenvalue: 0, eigenvector:[ − 2 1 ] \begin{bmatrix}
-2\\
1
\end{bmatrix} [ − 2 1 ]
Form the matrix P , P, P , whose i-th column is the i-th eigenvector:
[ 1 / 2 − 2 1 1 ] \begin{bmatrix}
1/2& -2\\
1 & 1
\end{bmatrix} [ 1/2 1 − 2 1 ] ( 1 / 2 ) 2 + ( 1 ) 2 = 5 / 4 (1/2)^2+(1)^2=5/4 ( 1/2 ) 2 + ( 1 ) 2 = 5/4
( − 2 ) 2 + ( 1 ) 2 = 5 (-2)^2+(1)2=5 ( − 2 ) 2 + ( 1 ) 2 = 5
Then an orthogonal matrix P P P
P = [ 1 / 5 − 2 / 5 2 / 5 1 / 5 ] P=\begin{bmatrix}
1/\sqrt{5} & -2/\sqrt{5}\\
2/\sqrt{5} & 1/\sqrt{5}
\end{bmatrix} P = [ 1/ 5 2/ 5 − 2/ 5 1/ 5 ]
Comments