Question #108696
Find an orthogonal matrix associated with matrix A D

1 2
2 4 
:
1
Expert's answer
2020-04-09T14:47:50-0400

Find an orthogonal matrix B such that PTAPP^TAP is diagonal when


A=[1224]A=\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}

First, the find eigenvalues and eigenvectors

Start from forming a new matrix by subtracting λ\lambda from the diagonal entries of the given matrix:


AλI=[1λ224λ]A-\lambda I=\begin{bmatrix} 1-\lambda & 2 \\ 2 & 4-\lambda \end{bmatrix}

Find the determinant of the obtained matrix:


det(AλI)=1λ224λ=det(A-\lambda I)=\begin{vmatrix} 1-\lambda & 2 \\ 2 & 4-\lambda \end{vmatrix}==(1λ)(4λ)2(2)=λ25λ=(1-\lambda)(4-\lambda)-2(2)=\lambda^2-5\lambda

This is a characteristic polynomial.

Solve the equation


λ25λ=0\lambda^2-5\lambda=0

The roots are:

λ1=5\lambda_1=5

λ2=0\lambda_2=0

These are the eigenvalues.

Next, find the eigenvectors.

λ1=5\lambda_1=5


[1λ224λ]=[4221]\begin{bmatrix} 1-\lambda & 2 \\ 2 & 4-\lambda \end{bmatrix}=\begin{bmatrix} -4 & 2 \\ 2 & -1 \end{bmatrix}

Perform row operations to obtain the rref of the matrix:

R2=R2+12R1:R_2=R_2+\dfrac{1}{2}R_1:


[4200]\begin{bmatrix} -4 & 2 \\ 0 & 0 \end{bmatrix}

R2=14R1:R_2=-\dfrac{1}{4}R_1:


[11200]\begin{bmatrix} 1& - {1 \over 2}\\ 0 & 0 \end{bmatrix}

Now, solve the matrix equation


[11200][v1v2]=[00]\begin{bmatrix} 1& - {1 \over 2}\\ 0 & 0 \end{bmatrix}\begin{bmatrix} v_1\\ v_2 \end{bmatrix}=\begin{bmatrix} 0\\ 0 \end{bmatrix}

If we take v2=t,v_2=t, then v1=12t,v2=tv_1={1 \over2}t, v_2=t

Therefore


v=[t/2t]=[1/21]t\text{v}=\begin{bmatrix} t/2\\ t \end{bmatrix}=\begin{bmatrix} 1/2\\ 1 \end{bmatrix}t

λ2=0\lambda_2=0


[1λ224λ]=[1224]\begin{bmatrix} 1-\lambda & 2 \\ 2 & 4-\lambda \end{bmatrix}=\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}

Perform row operations to obtain the rref of the matrix:

R2=R2(2)R1:R_2=R_2-(2)R_1:


[1200]\begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}

Now, solve the matrix equation


[1200][v1v2]=[00]\begin{bmatrix} 1& 2\\ 0 & 0 \end{bmatrix}\begin{bmatrix} v_1\\ v_2 \end{bmatrix}=\begin{bmatrix} 0\\ 0 \end{bmatrix}

If we take v2=t,v_2=t, then v1=2t,v2=tv_1=-2t, v_2=t.

Therefore


v=[2tt]=[21]t\text{v}=\begin{bmatrix} -2t\\ t \end{bmatrix}=\begin{bmatrix} -2\\ 1 \end{bmatrix}t

Eigenvalue: 5, eigenvector: [1/21]\begin{bmatrix} 1/2\\ 1 \end{bmatrix}

Eigenvalue: 0, eigenvector:[21]\begin{bmatrix} -2\\ 1 \end{bmatrix}

Form the matrix P,P, whose i-th column is the i-th eigenvector:


[1/2211]\begin{bmatrix} 1/2& -2\\ 1 & 1 \end{bmatrix}

(1/2)2+(1)2=5/4(1/2)^2+(1)^2=5/4

(2)2+(1)2=5(-2)^2+(1)2=5

Then an orthogonal matrix PP


P=[1/52/52/51/5]P=\begin{bmatrix} 1/\sqrt{5} & -2/\sqrt{5}\\ 2/\sqrt{5} & 1/\sqrt{5} \end{bmatrix}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS