Find an orthogonal matrix B such that "P^TAP" is diagonal when
"A=\\begin{bmatrix}\n 1 & 2 \\\\\n 2 & 4\n\\end{bmatrix}" First, the find eigenvalues and eigenvectors
Start from forming a new matrix by subtracting "\\lambda" from the diagonal entries of the given matrix:
"A-\\lambda I=\\begin{bmatrix}\n 1-\\lambda & 2 \\\\\n 2 & 4-\\lambda\n\\end{bmatrix}" Find the determinant of the obtained matrix:
"det(A-\\lambda I)=\\begin{vmatrix}\n 1-\\lambda & 2 \\\\\n 2 & 4-\\lambda\n\\end{vmatrix}=""=(1-\\lambda)(4-\\lambda)-2(2)=\\lambda^2-5\\lambda"This is a characteristic polynomial.
Solve the equation
"\\lambda^2-5\\lambda=0" The roots are:
"\\lambda_1=5"
"\\lambda_2=0"
These are the eigenvalues.
Next, find the eigenvectors.
"\\lambda_1=5"
"\\begin{bmatrix}\n 1-\\lambda & 2 \\\\\n 2 & 4-\\lambda\n\\end{bmatrix}=\\begin{bmatrix}\n -4 & 2 \\\\\n 2 & -1\n\\end{bmatrix}" Perform row operations to obtain the rref of the matrix:
"R_2=R_2+\\dfrac{1}{2}R_1:"
"\\begin{bmatrix}\n -4 & 2 \\\\\n 0 & 0\n\\end{bmatrix}" "R_2=-\\dfrac{1}{4}R_1:"
"\\begin{bmatrix}\n 1& - {1 \\over 2}\\\\\n 0 & 0\n\\end{bmatrix}" Now, solve the matrix equation
"\\begin{bmatrix}\n 1& - {1 \\over 2}\\\\\n 0 & 0\n\\end{bmatrix}\\begin{bmatrix}\n v_1\\\\\n v_2\n\\end{bmatrix}=\\begin{bmatrix}\n 0\\\\\n 0\n\\end{bmatrix}" If we take "v_2=t," then "v_1={1 \\over2}t, v_2=t"
Therefore
"\\text{v}=\\begin{bmatrix}\n t\/2\\\\\n t\n\\end{bmatrix}=\\begin{bmatrix}\n 1\/2\\\\\n 1\n\\end{bmatrix}t"
"\\lambda_2=0"
"\\begin{bmatrix}\n 1-\\lambda & 2 \\\\\n 2 & 4-\\lambda\n\\end{bmatrix}=\\begin{bmatrix}\n 1 & 2 \\\\\n 2 & 4\n\\end{bmatrix}" Perform row operations to obtain the rref of the matrix:
"R_2=R_2-(2)R_1:"
"\\begin{bmatrix}\n 1 & 2 \\\\\n 0 & 0\n\\end{bmatrix}" Now, solve the matrix equation
"\\begin{bmatrix}\n 1& 2\\\\\n 0 & 0\n\\end{bmatrix}\\begin{bmatrix}\n v_1\\\\\n v_2\n\\end{bmatrix}=\\begin{bmatrix}\n 0\\\\\n 0\n\\end{bmatrix}" If we take "v_2=t," then "v_1=-2t, v_2=t".
Therefore
"\\text{v}=\\begin{bmatrix}\n-2t\\\\\n t\n\\end{bmatrix}=\\begin{bmatrix}\n -2\\\\\n 1\n\\end{bmatrix}t"Eigenvalue: 5, eigenvector: "\\begin{bmatrix}\n 1\/2\\\\\n 1\n\\end{bmatrix}"
Eigenvalue: 0, eigenvector:"\\begin{bmatrix}\n -2\\\\\n 1\n\\end{bmatrix}"
Form the matrix "P," whose i-th column is the i-th eigenvector:
"\\begin{bmatrix}\n 1\/2& -2\\\\\n 1 & 1\n\\end{bmatrix}" "(1\/2)^2+(1)^2=5\/4"
"(-2)^2+(1)2=5"
Then an orthogonal matrix "P"
"P=\\begin{bmatrix}\n 1\/\\sqrt{5} & -2\/\\sqrt{5}\\\\\n 2\/\\sqrt{5} & 1\/\\sqrt{5}\n\\end{bmatrix}"
Comments
Leave a comment