"f(x)=\\begin{cases}\nCxe^{-x\/2}, x>0\n\\\\\n0, x\\leq 0\n\\end{cases}"
(here we have "e^{-x\/2}" because "Cx e^{x\/2}" is unbounded, but "\\int \\limits_0^{\\infin}f(x)=1" to be PDF)
a.
"\\int \\limits _0^{\\infin}f(x)dx= \\int \\limits _0^{\\infin}Cxe^{-x\/2}dx=\\\\=-C(2x+4)e^{-x\/2} \\big|_0^{\\infin}=4C \\ \\Rightarrow C=1\/4"
Answer: "C=1\/4"
b.
"\\mu =\\int \\limits_0^{\\infin}xf(x)dx =\\int \\limits_0^{\\infin}1\/4 x^2e^{-x\/2}dx=\\\\=-1\/2(x^2+4x+8)e^{-x\/2}\\big|_0^{\\infin}=4"
Answer: "\\mu=4"
c.
"0.5=F(x)=\\int \\limits _0^xf(t)dt=\\\\=\\int\\limits _0^x 1\/4te^{-t\/2}dt=-1\/2(x+2)e^{-x\/2}+1,"
"0.5=-1\/2(x+2)e^{-x\/2}+1, \\ \\ (x+2)=e^{x\/2}, \\ \\ \\ x\\approx 3.356"
Answer: the second quartile is "3.356".
d.
"\\ \\sigma ^2=\\int\\limits _0^{\\infin} (x-\\mu)^2f(x)dx= \\int\\limits _0^{\\infin} 1\/4(x-4)^2x e^{-x\/2}dx=\\\\=\n-1\/2(x^3-2x^2+8x+16)e^{-x\/2}\\big|_0^{\\infin}=8,"
"\\sigma=\\sqrt{\\sigma^2}=\\sqrt{8}=2\\sqrt{2}."
Answer: "\\sigma =2\\sqrt{2}"
Comments
Leave a comment