The number of possible 6-number combinations
The probability that you will match k numbers
"P(0)=\\dfrac{\\dbinom{6}{0}\\dbinom{49-6}{6-0}}{\\dbinom{49}{6}}=\\dfrac{\\dfrac{6!}{0!(6-0)!}\\cdot\\dfrac{43!}{6!(43-6)!}}{13983816}=""={1\\cdot6096454\\over 13983816}={6096454 \\over 13983816}"
"P(1)=\\dfrac{\\dbinom{6}{1}\\dbinom{49-6}{6-1}}{\\dbinom{49}{6}}=\\dfrac{\\dfrac{6!}{1!(6-1)!}\\cdot\\dfrac{43!}{1!(43-1)!}}{13983816}=""={6\\cdot962598\\over 13983816}={5775588 \\over 13983816}"
"P(2)=\\dfrac{\\dbinom{6}{2}\\dbinom{49-6}{6-2}}{\\dbinom{49}{6}}=\\dfrac{\\dfrac{6!}{2!(6-2)!}\\cdot\\dfrac{43!}{4!(43-4)!}}{13983816}=""={15\\cdot123410\\over 13983816}={1851150 \\over 13983816}"
"P(4)=\\dfrac{\\dbinom{6}{4}\\dbinom{49-6}{6-4}}{\\dbinom{49}{6}}=\\dfrac{\\dfrac{6!}{4!(6-4)!}\\cdot\\dfrac{43!}{2!(43-2)!}}{13983816}=""={15\\cdot903\\over 13983816}={13545 \\over 13983816}"
"P(6)=\\dfrac{\\dbinom{6}{6}\\dbinom{49-6}{6-6}}{\\dbinom{49}{6}}=\\dfrac{\\dfrac{6!}{6!(6-6)!}\\cdot\\dfrac{43!}{0!(43-0)!}}{13983816}=""={1\\cdot1\\over 13983816}={1\\over 13983816}"
a. The probability that you will match 3 numbers
b. The probability that you will match 2 or less numbers
c. The expected number of matching number
"+3\\cdot{246820 \\over 13983816}+4\\cdot{13545 \\over 13983816}+5\\cdot{258 \\over 13983816}+"
"+6\\cdot{1 \\over 13983816}={10273824 \\over 13983816}={36 \\over 49}\\approx0.7347"
Comments
Leave a comment