Let "X=" the number of small business people on the committee.
There are 19C5 ways to select 5 people (committee members) out of a total of 19 people (11 civil employees and 8 small business people).
a) The probability that none of the people selected are small business people
b) The probability at least 2 people are small business people
"=1-{462\\cdot1 \\over 11628}-{330\\cdot8 \\over 11628}={1421 \\over 1938}\\approx0.7332"
c) The expected number of small business people on the committee.
"P(X=1)={440 \\over 1938}"
"P(X=2)={ \\dbinom{11}{5-2}\\dbinom{8}{2}\\over \\dbinom{19}{8}}=\\dfrac{\\dfrac{11!}{3!(11-3)!}\\cdot\\dfrac{8!}{2!(8-2)}}{11628}=""={165\\cdot28 \\over 11628}={770 \\over 1938}"
"P(X=3)={ \\dbinom{11}{5-3}\\dbinom{8}{3}\\over \\dbinom{19}{8}}=\\dfrac{\\dfrac{11!}{2!(11-2)!}\\cdot\\dfrac{8!}{3!(8-3)}}{11628}=""={55\\cdot56 \\over 11628}={770 \\over 2907}"
"P(X=4)={ \\dbinom{11}{5-4}\\dbinom{8}{4}\\over \\dbinom{19}{8}}=\\dfrac{\\dfrac{11!}{1!(11-1)!}\\cdot\\dfrac{8!}{4!(8-4)}}{11628}=""={11\\cdot70 \\over 11628}={385 \\over 5814}"
"P(X=5)={ \\dbinom{11}{5-5}\\dbinom{8}{5}\\over \\dbinom{19}{8}}=\\dfrac{\\dfrac{11!}{0!(11-0)!}\\cdot\\dfrac{8!}{5!(8-5)}}{11628}=""={1\\cdot56 \\over 11628}={14\\over 2907}"
"E(X)=\\displaystyle\\sum_{i=0}^5x_iP(X=x_i)=0\\cdot{77 \\over 1938}+1\\cdot{440 \\over 1938}+"
"+2\\cdot{770 \\over 1938}+3\\cdot{770 \\over 2907}+4\\cdot{385 \\over 5814}+5\\cdot{14 \\over 2907}={40 \\over 19}"
"E(X)={40 \\over 19}\\approx2.1053"
Comments
Leave a comment