"\\binom{8}{1}={8! \\over 1!(18-1)!}=8"
"\\binom{8}{2}={8! \\over 2!(18-2)!}=28"
"\\binom{8}{4}={8! \\over 4!(18-4)!}=70"
"\\binom{8}{5}={8! \\over 5!(18-5)!}=56"
"\\binom{8}{6}={8! \\over 6!(18-6)!}=28"
"\\binom{10}{0}={10! \\over 0!(10-0)!}=1"
"\\binom{10}{1}={10! \\over 1!(10-1)!}=10"
"\\binom{10}{2}={10! \\over 2!(10-2)!}=45"
"\\binom{10}{3}={10! \\over 3!(10-3)!}=120"
"\\binom{10}{4}={10! \\over 4!(10-4)!}=210"
"\\binom{10}{5}={10! \\over 5!(10-5)!}=252"
"\\binom{10}{6}={10! \\over 6!(10-6)!}=210"
Let "X=" the number of women on a civil- court jury of 6.
"P(X=0)={\\dbinom{10}{0}\\dbinom{8}{6-0} \\over \\dbinom{18}{6}}={1(28) \\over 18564}={1 \\over 663}"
"P(X=1)={\\dbinom{10}{1}\\dbinom{8}{6-1} \\over \\dbinom{18}{6}}={10(56) \\over 18564}={20 \\over 663}"
"P(X=2)={\\dbinom{10}{2}\\dbinom{8}{6-2} \\over \\dbinom{18}{6}}={45(70) \\over 18564}={75 \\over 442}"
"P(X=3)={\\dbinom{10}{3}\\dbinom{8}{6-3} \\over \\dbinom{18}{6}}={120(56) \\over 18564}={80 \\over 221}"
"P(X=4)={\\dbinom{10}{4}\\dbinom{8}{6-4} \\over \\dbinom{18}{6}}={210(28) \\over 18564}={70 \\over 221}"
"P(X=5)={\\dbinom{10}{5}\\dbinom{8}{6-5} \\over \\dbinom{18}{6}}={252(8) \\over 18564}={24 \\over 221}"
"P(X=6)={\\dbinom{10}{6}\\dbinom{8}{6-6} \\over \\dbinom{18}{6}}={210(1) \\over 18564}={5 \\over 442}"
Check
The probability distribution for the number of women on a civil- court jury of 6
b) The probability that there are at least 2 women in the jury is
"=1-{1 \\over 663}-{20 \\over 663}={214 \\over 221}"
Comments
Leave a comment