The negative hypergeometric distribution describes probabilities for when sampling from a finite population without replacement in which each sample can be classified into two mutually exclusive categories: "NHGeom(w,b,r)" (Introduction to Probability, Second EditionJoseph K. Blitzstein, Jessica Hwang pages 168-169)
"P(X=k)={\\dbinom{w}{r-1}\\dbinom{b}{k} \\over\\dbinom{w+b}{r+k-1}}\\cdot{w-r+1\\over w+b-r-k+1}"
The expected value of "NHGeom(w,b,r)" is
"E(X)={rb \\over w+1}" If we shuffle a deck of cards and deal them one at a time, the number of cards dealt before uncoveeering the first ace is "NHGeom(4,48,1)."
"P(X=k)={\\dbinom{4}{1-1}\\dbinom{48}{k} \\over\\dbinom{4+48}{1+k-1}}\\cdot{4-1+1\\over 4+48-1-k+1}=""={\\dbinom{4}{0}\\dbinom{48}{k} \\over\\dbinom{52}{k}}\\cdot{4\\over 52-k}" (a) The probability that you will first cut an ace on the 5th cut is
"P(X=5-1)={\\dbinom{4}{0}\\dbinom{48}{4} \\over\\dbinom{52}{4}}\\cdot{4\\over 52-4}=""={1\\cdot\\dfrac{48!}{4!(48-4)!} \\over\\dfrac{52!}{4!(52-4)!}}\\cdot{4\\over 48}={3243 \\over 54145}\\approx0.0599" Or
"{48\\over 52}\\cdot{47\\over 51}\\cdot{46\\over 50}\\cdot{45\\over 49}\\cdot{4\\over 48}={3243 \\over 54145}\\approx0.0599"
(b) The probability that you will first cut an ace in fewer than 4 cuts is
"P(X=1-1)+P(X=2-1)+P(X=3-1)=""={4\\over 52}+{48\\over 52}\\cdot{4\\over 51}+{48\\over 52}\\cdot{47\\over 51}\\cdot{4\\over 50}={1201\\over 5525}\\approx0.2174"
(c) The expected waiting time before you cut an ace is
"E(X)={1\\cdot48 \\over 4+1}={48 \\over5}=9.6"
Comments
Leave a comment