Let a random variable follow the binomial distribution with parameters n =13, p =0.1. Compute the probability of x ≤4.
"\\mu\\text{ is the binomial random variable}, \\mu\\in B(n,p).\\\\\n\\mu\\text{ is the number of successes in }n \\text{ Bernoulli trials}.\\\\\nP\\{\\mu=k\\}=C_n^kp^k(1-p)^{n-k}, k=0,1,\\ldots,n.\\\\\n\\text{Then }P\\{\\mu\\leq k\\}=\\sum_{i=0}^kC_n^ip^i(1-p)^{n-i}.\\\\\n\\mu\\in B(13,0.1).\\\\\nP\\{\\mu\\leq4\\}=\\sum_{i=0}^4C_{13}^i(0.1)^i(0.9)^{13-i}=(0.9)^{13}+13(0.1)(0.9)^{12}+78(0.1)^2(0.9)^{11}+22\\cdot 13(0.1)^3(0.9)^{10}+5\\cdot11\\cdot13(0.1)^4(0.9)^9\\approx0.9935."
Comments
Leave a comment