Question #285176

Suppose that 𝑓 is differentiable and 𝑓′′(π‘Ž) exists. Prove that 𝑓′′(π‘Ž)=limβ„Žβ†’π‘Žπ‘“(π‘Ž+β„Ž)βˆ’2𝑓(π‘Ž)+𝑓(π‘Žβˆ’β„Ž)β„Ž2. Give an example where the above limit exists, but 𝑓′′(π‘Ž) does not exist.


1
Expert's answer
2022-01-06T18:08:04-0500

fβ€²β€²(x)=lim⁑hβ†’0fβ€²(x+h)βˆ’fβ€²(x)h=f''(x)=\displaystyle \lim_{h\to 0}\frac{f'(x+h)-f'(x)}{h}=


=lim⁑hβ†’0lim⁑h1β†’0fβ€²(x+h)βˆ’fβ€²(x+hβˆ’h1)h1βˆ’lim⁑h2β†’0fβ€²(x)βˆ’fβ€²(xβˆ’h2)h2h=\displaystyle \lim_{h\to 0}\frac{\displaystyle \lim_{h_1\to 0}\frac{f'(x+h)-f'(x+h-h_1)}{h_1}-\displaystyle \lim_{h_2\to 0}\frac{f'(x)-f'(x-h_2)}{h_2}}{h}


letting h=h1=h2h=h_1=h_2, i.e. taking them all to zero at the same rate we have:


fβ€²β€²(x)=lim⁑hβ†’0fβ€²(x+h)βˆ’fβ€²(x+hβˆ’h)hβˆ’fβ€²(x)βˆ’fβ€²(xβˆ’h)hh=lim⁑hβ†’0f(x+h)+f(xβˆ’h)βˆ’2f(x)h2f''(x)=\displaystyle \lim_{h\to 0}\frac{\frac{f'(x+h)-f'(x+h-h)}{h}-\frac{f'(x)-f'(x-h)}{h}}{h}=\displaystyle \lim_{h\to 0}\frac{f(x+h)+f(x-h)-2f(x)}{h^2}


then:


fβ€²β€²(a)=lim⁑hβ†’0f(a+h)+f(aβˆ’h)βˆ’2f(a)h2f''(a)=\displaystyle \lim_{h\to 0}\frac{f(a+h)+f(a-h)-2f(a)}{h^2}


example:

for fβ€²(x)=∣x∣f'(x)=|x| :


by L’HΓ΄pital’s rule we have:


lim⁑hβ†’0f(x+h)+f(xβˆ’h)βˆ’2f(x)h2=lim⁑hβ†’0fβ€²(x+h)βˆ’fβ€²(x)2h=\displaystyle \lim_{h\to 0}\frac{f(x+h)+f(x-h)-2f(x)}{h^2}=\displaystyle \lim_{h\to 0}\frac{f'(x+h)-f'(x)}{2h}=


=lim⁑hβ†’0∣0+hβˆ£βˆ’βˆ£0βˆ’h∣2h=0=\displaystyle \lim_{h\to 0}\frac{|0+h|-|0-h|}{2h}=0


That means the limit exists at x = 0, but fβ€²(x)=∣x∣f'(x)=|x| is not differentiable at 0, so fβ€²β€²(0)f''(0)

does not exist.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS