Question #284347

Are the statement true or false?give reason for your answers: the function f defined on r by f(x) ={0 x is rational 2 is irrational} Is integrable in the interval [2,3]

1
Expert's answer
2022-01-03T18:52:48-0500

The answer is false and we give the reason in the following proof.ProofGiven the function f(x)={0if x is rational2if x is irrationalif [a,b][2,3] with a<b then inf[a,b]f=0 and sup[a,b]f=2 since [a,b] contains both rational and irrational numbers.Thus L(f,P,[2,3])=0 and U(f,P,[2,3])=2 for every partition P of [2,3].Hence we have that L(f,[2,3])=0 and U(f,[2,3])=2.Since L(f,[2,3])U(f,[2,3]) we conclude that f is not Riemann integrable.\text{The answer is false and we give the reason in the following proof.}\\ \textbf{Proof}\\ \text{Given the function } \displaystyle f(x) = \begin{cases} 0 & \text{if $x$ is rational} \\ 2 & \text{if $x$ is irrational} \end{cases} \\ \text{if }[a,b] \subset [2,3] \text{ with $a < b$ then } \inf_{[a,b]} f = 0 \text{ and } \sup_{[a,b]} f = 2 \text{ since $[a,b]$ contains both rational and irrational numbers.} \\ \text{Thus } L(f, P,[2,3]) = 0 \text{ and } U(f,P,[2,3]) = 2 \text{ for every partition $P$ of $[2,3]$.}\\ \text{Hence we have that } L(f, [2,3]) = 0 \text{ and } U(f,[2,3]) = 2. \\ \text{Since } L(f, [2,3]) \ne U(f,[2,3]) \text{ we conclude that $f$ is not Riemann integrable.}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS