Question #284803

Examine the convergence of the series


a) 3×4/5^2+5×6/7^2+7×8/9^2+.........


b) 1+4x+4^2x^2+4^3x^3+......(x>0)

1
Expert's answer
2022-01-06T12:19:50-0500

a)

3×452+5×672+7×892+...\dfrac{3\times4}{5^2}+\dfrac{5\times6}{7^2}+\dfrac{7\times8}{9^2}+...

=n=1(2n+1)(2n+2)(2n+3)2=\displaystyle\sum_{n=1}^{\infin}\dfrac{(2n+1)(2n+2)}{(2n+3)^2}

Use Test for Divergence


an=(2n+1)(2n+2)(2n+3)2a_n=\dfrac{(2n+1)(2n+2)}{(2n+3)^2}

limnan=limn(2n+1)(2n+2)(2n+3)2\lim\limits_{n\to \infin}a_n=\lim\limits_{n\to \infin}\dfrac{(2n+1)(2n+2)}{(2n+3)^2}

=limn(2nn+1n)(2n2+2n)(2nn+3n)2=\lim\limits_{n\to \infin}\dfrac{(\dfrac{2n}{n}+\dfrac{1}{n})(\dfrac{2n}{2}+\dfrac{2}{n})}{(\dfrac{2n}{n}+\dfrac{3}{n})^2}

=limn(2+1n)(2+2n)(2+3n)2=(2+0)(2+0)(2+0)2=10=\lim\limits_{n\to \infin}\dfrac{(2+\dfrac{1}{n})(2+\dfrac{2}{n})}{(2+\dfrac{3}{n})^2}=\dfrac{(2+0)(2+0)}{(2+0)^2}=1\not=0

The series 3×452+5×672+7×892+...\dfrac{3\times4}{5^2}+\dfrac{5\times6}{7^2}+\dfrac{7\times8}{9^2}+... diverges by the Test for Divergence.


b)


1+4x+42x2+43x3+......=n=0(4x)n,x>01+4x+4^2x^2+4^3x^3+......=\displaystyle\sum_{n=0}^{\infin}(4x)^n, x>0

This is a geometric series with a=1a=1 and r=4x.r=4x.

If 0<4x<1,0<4x<1, the geometric series converges and its sum is


S=114x.S=\dfrac{1}{1-4x}.

If 4x1,4x\geq1, the geometric series diverges.

Then the series


1+4x+42x2+43x3+......=n=0(4x)n1+4x+4^2x^2+4^3x^3+......=\displaystyle\sum_{n=0}^{\infin}(4x)^n

converges for 0<x<140<x<\dfrac{1}{4} and diverges for x14.x\geq \dfrac{1}{4}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS