a)
523×4+725×6+927×8+...
=n=1∑∞(2n+3)2(2n+1)(2n+2) Use Test for Divergence
an=(2n+3)2(2n+1)(2n+2)
n→∞liman=n→∞lim(2n+3)2(2n+1)(2n+2)
=n→∞lim(n2n+n3)2(n2n+n1)(22n+n2)
=n→∞lim(2+n3)2(2+n1)(2+n2)=(2+0)2(2+0)(2+0)=1=0The series 523×4+725×6+927×8+... diverges by the Test for Divergence.
b)
1+4x+42x2+43x3+......=n=0∑∞(4x)n,x>0 This is a geometric series with a=1 and r=4x.
If 0<4x<1, the geometric series converges and its sum is
S=1−4x1. If 4x≥1, the geometric series diverges.
Then the series
1+4x+42x2+43x3+......=n=0∑∞(4x)n converges for 0<x<41 and diverges for x≥41.
Comments