Answer to Question #260595 in Real Analysis for saduni

Question #260595

Find the convergence of the following series,

  1. 𝑛=1(√𝑛+1−√𝑛)/ 𝑛  
  2. 𝑛=1 cos(1/n)
  3. 𝑛=1 (sin n)/n
  4. 𝑛=1 ((𝑛!) 2)/((2𝑛)!)
  5. 𝑛=1 (n/n+1)n2
1
Expert's answer
2021-11-08T02:49:49-0500

1.

n=1n+1nn\displaystyle\sum_{n=1}^{\infin}\dfrac{\sqrt{n+1}-\sqrt{n}}{n}

=n=1n+1nn(n+1+nn+1+n)=\displaystyle\sum_{n=1}^{\infin}\dfrac{\sqrt{n+1}-\sqrt{n}}{n}(\dfrac{\sqrt{n+1}+\sqrt{n}}{\sqrt{n+1}+\sqrt{n}})

=n=11n(n+1+n)=\displaystyle\sum_{n=1}^{\infin}\dfrac{1}{n(\sqrt{n+1}+\sqrt{n})}

=n=11n3/2(1+1/n+1)=\displaystyle\sum_{n=1}^{\infin}\dfrac{1}{n^{3/2}(\sqrt{1+1/n}+1)}

The p-series n=11n3/2\displaystyle\sum_{n=1}^{\infin}\dfrac{1}{n^{3/2}} is convergent (p=3/2).


1n3/2(1+1/n+1)<12n3/2,n1\dfrac{1}{n^{3/2}(\sqrt{1+1/n}+1)}<\dfrac{1}{2n^{3/2}}, n\geq1

Then the series n=11n3/2(1+1/n+1)\displaystyle\sum_{n=1}^{\infin}\dfrac{1}{n^{3/2}(\sqrt{1+1/n}+1)} converges by the Comparison Test.


Therefore the series n=1n+1nn\displaystyle\sum_{n=1}^{\infin}\dfrac{\sqrt{n+1}-\sqrt{n}}{n} converges by the Comparison Test.

2.

n=1cos(1n)\displaystyle\sum_{n=1}^{\infin}\cos(\dfrac{1}{n})

limncos(1n)=cos(0)=10\lim\limits_{n\to\infin}\cos(\dfrac{1}{n})=\cos(0)=1\not=0

Therefore the series n=1cos(1n)\displaystyle\sum_{n=1}^{\infin}\cos(\dfrac{1}{n}) diverges by the Test for Divergence.


3.

n=1sin(n)n\displaystyle\sum_{n=1}^{\infin}\dfrac{\sin(n)}{n}

Use the Dirichlet's Test


2sin(1)n=1msin(n)=n=1m(cos(n1)cos(n+1))2\sin(1)\displaystyle\sum_{n=1}^{m}\sin(n)=\displaystyle\sum_{n=1}^{m}(\cos(n-1)-\cos(n+1))

=(cos(0)cos(2))+(cos(1)cos(3))=(\cos(0)-\cos(2))+(\cos(1)-\cos(3))

+(cos(2)cos(4))+...+(cos(m2)cos(m))+(\cos(2)-\cos(4))+...+(\cos(m-2)-\cos(m))

+(cos(m1)cos(m+1))+(\cos(m-1)-\cos(m+1))

=1+cos(1)cos(m)cos(m+1)=1+\cos(1)-\cos(m)-\cos(m+1)

Then


n=1msin(n)=1+cos(1)cos(m)cos(m+1)2sin(1)\displaystyle\sum_{n=1}^{m}\sin(n)=\dfrac{1+\cos(1)-\cos(m)-\cos(m+1)}{2\sin(1)}

n=1msin(n)=1+cos(1)cos(m)cos(m+1)2sin(1)\bigg|\displaystyle\sum_{n=1}^{m}\sin(n)\bigg|=\dfrac{|1+\cos(1)-\cos(m)-\cos(m+1)|}{2\sin(1)}

1+1+1+12sin(1)=2sin(1)=M\leq \dfrac{1+1+1+1}{2\sin(1)}=\dfrac{2}{\sin(1)}=M

Let an=1n.a_n=\dfrac{1}{n}. Then

an+1=1n+1<1n=an,n1a_{n+1}=\dfrac{1}{n+1}<\dfrac{1}{n}=a_n, n\geq1limnan=limn1n=0\lim\limits_{n\to\infin}a_n=\lim\limits_{n\to\infin}\dfrac{1}{n}=0

Therefore the series n=1sin(n)n\displaystyle\sum_{n=1}^{\infin}\dfrac{\sin(n)}{n} converges by the Dirichlet's Test.


4.

n=1(n!)2(2n)!\displaystyle\sum_{n=1}^{\infin}\dfrac{(n!)^2}{(2n)!}

Apply the Ratio Test.


limn((n+1)!)2(2(n+1))!(n!)2(2n)!=limn(n+1)2(2n+1)(2n+2)=14<1\lim\limits_{n\to\infin}\dfrac{\dfrac{((n+1)!)^2}{(2(n+1))!}}{\dfrac{(n!)^2}{(2n)!}}=\lim\limits_{n\to\infin}\dfrac{(n+1)^2}{(2n+1)(2n+2)}=\dfrac{1}{4}<1

Therefore the series n=1(n!)2(2n)!\displaystyle\sum_{n=1}^{\infin}\dfrac{(n!)^2}{(2n)!} converges by the RatioTest.


5.

n=1(nn+1)n2\displaystyle\sum_{n=1}^{\infin}(\dfrac{n}{n+1})^{n^2}

Use the Root Test.


limn(nn+1)n2n=limn(11n)n=e1=1e<1\lim\limits_{n\to\infin}\sqrt[n]{(\dfrac{n}{n+1})^{n^2}}=\lim\limits_{n\to\infin}(1-\dfrac{1}{n} )^n=e^{-1}=\dfrac{1}{e}<1

Therefore the series n=1(nn+1)n2\displaystyle\sum_{n=1}^{\infin}(\dfrac{n}{n+1})^{n^2} converges by the Root Test.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment