1.
n=1∑∞nn+1−n
=n=1∑∞nn+1−n(n+1+nn+1+n)
=n=1∑∞n(n+1+n)1
=n=1∑∞n3/2(1+1/n+1)1 The p-series n=1∑∞n3/21 is convergent (p=3/2).
n3/2(1+1/n+1)1<2n3/21,n≥1 Then the series n=1∑∞n3/2(1+1/n+1)1 converges by the Comparison Test.
Therefore the series n=1∑∞nn+1−n converges by the Comparison Test.
2.
n=1∑∞cos(n1)
n→∞limcos(n1)=cos(0)=1=0 Therefore the series n=1∑∞cos(n1) diverges by the Test for Divergence.
3.
n=1∑∞nsin(n) Use the Dirichlet's Test
2sin(1)n=1∑msin(n)=n=1∑m(cos(n−1)−cos(n+1))
=(cos(0)−cos(2))+(cos(1)−cos(3))
+(cos(2)−cos(4))+...+(cos(m−2)−cos(m))
+(cos(m−1)−cos(m+1))
=1+cos(1)−cos(m)−cos(m+1) Then
n=1∑msin(n)=2sin(1)1+cos(1)−cos(m)−cos(m+1)
∣∣n=1∑msin(n)∣∣=2sin(1)∣1+cos(1)−cos(m)−cos(m+1)∣
≤2sin(1)1+1+1+1=sin(1)2=M Let an=n1. Then
an+1=n+11<n1=an,n≥1n→∞liman=n→∞limn1=0 Therefore the series n=1∑∞nsin(n) converges by the Dirichlet's Test.
4.
n=1∑∞(2n)!(n!)2Apply the Ratio Test.
n→∞lim(2n)!(n!)2(2(n+1))!((n+1)!)2=n→∞lim(2n+1)(2n+2)(n+1)2=41<1 Therefore the series n=1∑∞(2n)!(n!)2 converges by the RatioTest.
5.
n=1∑∞(n+1n)n2 Use the Root Test.
n→∞limn(n+1n)n2=n→∞lim(1−n1)n=e−1=e1<1 Therefore the series n=1∑∞(n+1n)n2 converges by the Root Test.
Comments
Leave a comment