Let
I=∫011+n2x2nf(x)dx=I1+I2
where
I1=∫0n−1/31+n2x2nf(x)dx
and
I2=∫n−1/311+n2x2nf(x)dx
∣f(x)∣≤M because f is continious. We have:
I2≤∫n−1/31∣1+n2x2nf(x)∣dx≤∫n−1/311+n2x2nMdx≤∫n−1/311+n2(n−1/3)2nMdx=
=1+n2(n−1/3)2nM(1−n−1/3)=o(1)
Put
I3=∫0n−1/31+n2x2nf(0)dx
We have:
∣I1−I3∣=∣∫0n−1/31+n2x2n(f(x)−f(0))dx∣≤
≤n∈[0,n−1/3]sup∣f(x)−f(0)∣⋅∫0n−1/31+n2x2ndxdx=o(1)⋅∫0n−1/31+n2x2d(nx)dx=
=o(1)⋅arctan(n⋅n−1/3)=o(1)⋅O(1)
Hence
I=I1+I2=I3+(I1−I3)+I2=I3+o(1)+o(1)
where
I3=f(0)∫0n−1/31+n2x2d(nx)dx=f(0)⋅arctan(n⋅n−1/3)=f(0)2π+o(1)
So,
I→f(0)2π as n→∞
Comments