Question #260231

If 𝑓 is a continuous function on [0,1], show that lim 𝑛→∞[0 to 1] ∫ 𝑛𝑓(𝑥)/(1+n^2.𝑥^2) 𝑑𝑥 = 𝜋/2. 𝑓(0)


1
Expert's answer
2021-11-03T17:01:49-0400

Let


I=01nf(x)1+n2x2dx=I1+I2I=\displaystyle{\int^{1}_{0}}\frac{nf(x)}{1+n^2x^2}dx=I_1+I_2


where


I1=0n1/3nf(x)1+n2x2dxI_1=\displaystyle{\int^{n^{-1/3}}_{0}}\frac{nf(x)}{1+n^2x^2}dx


and


I2=n1/31nf(x)1+n2x2dxI_2=\displaystyle{\int^{1}_{n^{-1/3}}}\frac{nf(x)}{1+n^2x^2}dx


f(x)M|f(x)|≤M  because f is continious. We have:


I2n1/31nf(x)1+n2x2dxn1/31nM1+n2x2dxn1/31nM1+n2(n1/3)2dx=I_2\le\displaystyle{\int^{1}_{n^{-1/3}}}|\frac{nf(x)}{1+n^2x^2}|dx\le \displaystyle{\int^{1}_{n^{-1/3}}}\frac{nM}{1+n^2x^2}dx \le \displaystyle{\int^{1}_{n^{-1/3}}}\frac{nM}{1+n^2(n^{-1/3})^2}dx=


=nM1+n2(n1/3)2(1n1/3)=o(1)=\frac{nM}{1+n^2(n^{-1/3})^2}(1-n^{-1/3})=o(1)


Put


I3=0n1/3nf(0)1+n2x2dxI_3=\displaystyle{\int^{n^{-1/3}}_{0}}\frac{nf(0)}{1+n^2x^2}dx


We have:


I1I3=0n1/3n(f(x)f(0))1+n2x2dx|I_1-I_3|=|\displaystyle{\int^{n^{-1/3}}_{0}}\frac{n(f(x)-f(0))}{1+n^2x^2}dx|\le


supn[0,n1/3]f(x)f(0)0n1/3ndx1+n2x2dx=o(1)0n1/3d(nx)1+n2x2dx=\le \displaystyle{\sup_{n\in [0,n^{-1/3}]}}|f(x)-f(0)|\cdot \displaystyle{\int^{n^{-1/3}}_{0}}\frac{ndx}{1+n^2x^2}dx=o(1)\cdot \displaystyle{\int^{n^{-1/3}}_{0}}\frac{d(nx)}{1+n^2x^2}dx=


=o(1)arctan(nn1/3)=o(1)O(1)=o(1)\cdot arctan(n\cdot n^{-1/3})=o(1)\cdot O(1)


Hence

I=I1+I2=I3+(I1I3)+I2=I3+o(1)+o(1)I=I_1+I_2=I_3+(I_1-I_3)+I_2=I_3+o(1)+o(1)

where


I3=f(0)0n1/3d(nx)1+n2x2dx=f(0)arctan(nn1/3)=f(0)π2+o(1)I_3=f(0)\displaystyle{\int^{n^{-1/3}}_{0}}\frac{d(nx)}{1+n^2x^2}dx=f(0)\cdot arctan(n\cdot n^{-1/3})=f(0)\frac{\pi}{2}+o(1)


So,


If(0)π2I\to f(0)\frac{\pi}{2} as nn\to \infin


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS