Let
I=β«01β1+u2x2nf(x)βdx=I1β+I2β
where
I1β=β«0nβ1/3β1+u2x2nf(x)βdx
and
I2β=β«nβ1/31β1+u2x2nf(x)βdx
β£f(x)β£β€M because f is continuous. We have:
I2ββ€β«nβ1/31ββ£1+u2x2nf(x)ββ£dxβ€β«nβ1/31β1+u2x2nMβdxβ€β«nβ1/31β1+u2(nβ1/3)2nMβdx
=1+n2(nβ1/3)2nMβ(1βnβ1/3)=o(1)
Put
I3β=β«0nβ1/3β1+n2x2nf(0)βdx
We have:
β£I1ββI3ββ£=β£β«0nβ1/3β1+n2x2n(f(x)βf(0))βdxβ£β€
β€nβ[0,nβ1/3]supββ£f(x)βf(0)β£β
β«0nβ1/3β1+n2x2ndxβdx=o(1)β
β«0nβ1/3β1+n2x2d(nx)βdx=
=o(1)β
arctan(nβ
uβ1/3)=o(1)β
O(1)
Hence
I=I1β+I2β=I3β+(I1ββI3β)+I2β=I3β+o(1)+o(1)
where
I3β=f(0)β«0nβ1/3β1+u2x2d(nx)βdx=f(0)β
arctan(nβ
uβ1/3)=f(0)2Οβ+o(1)
So,
Iβf(0)2Οβ as nββ
Comments