Question #260220

If 𝑓 is a continuous function on [0,1], show that limπ‘›β†’βˆž ∫ 𝑛𝑓(π‘₯) 1+𝑒2π‘₯ 2 1 0 𝑑π‘₯ = πœ‹ 2 𝑓(0). 


1
Expert's answer
2021-11-07T18:11:20-0500

Let


I=∫01nf(x)1+u2x2dx=I1+I2I=\displaystyle{\int^{1}_{0}}\frac{nf(x)}{1+u^2x^2}dx=I_1+I_2


where


I1=∫0nβˆ’1/3nf(x)1+u2x2dxI_1=\displaystyle{\int^{n^{-1/3}}_{0}}\frac{nf(x)}{1+u^2x^2}dx


and


I2=∫nβˆ’1/31nf(x)1+u2x2dxI_2=\displaystyle{\int^{1}_{n^{-1/3}}}\frac{nf(x)}{1+u^2x^2}dx


∣f(x)βˆ£β‰€M|f(x)|≀M because f is continuous. We have:


I2β‰€βˆ«nβˆ’1/31∣nf(x)1+u2x2∣dxβ‰€βˆ«nβˆ’1/31nM1+u2x2dxβ‰€βˆ«nβˆ’1/31nM1+u2(nβˆ’1/3)2dxI_2\le\displaystyle{\int^{1}_{n^{-1/3}}}|\frac{nf(x)}{1+u^2x^2}|dx\le \displaystyle{\int^{1}_{n^{-1/3}}}\frac{nM}{1+u^2x^2}dx \le \displaystyle{\int^{1}_{n^{-1/3}}}\frac{nM}{1+u^2(n^{-1/3})^2}dx\\

=nM1+n2(nβˆ’1/3)2(1βˆ’nβˆ’1/3)=o(1)=\frac{nM}{1+n^2(n^{-1/3})^2}(1-n^{-1/3})=o(1)


Put


I3=∫0nβˆ’1/3nf(0)1+n2x2dxI_3=\displaystyle{\int^{n^{-1/3}}_{0}}\frac{nf(0)}{1+n^2x^2}dx


We have:


∣I1βˆ’I3∣=∣∫0nβˆ’1/3n(f(x)βˆ’f(0))1+n2x2dxβˆ£β‰€|I_1-I_3|=|\displaystyle{\int^{n^{-1/3}}_{0}}\frac{n(f(x)-f(0))}{1+n^2x^2}dx|\le


≀sup⁑n∈[0,nβˆ’1/3]∣f(x)βˆ’f(0)βˆ£β‹…βˆ«0nβˆ’1/3ndx1+n2x2dx=o(1)β‹…βˆ«0nβˆ’1/3d(nx)1+n2x2dx=\le \displaystyle{\sup_{n\in [0,n^{-1/3}]}}|f(x)-f(0)|\cdot \displaystyle{\int^{n^{-1/3}}_{0}}\frac{ndx}{1+n^2x^2}dx=o(1)\cdot \displaystyle{\int^{n^{-1/3}}_{0}}\frac{d(nx)}{1+n^2x^2}dx=


=o(1)β‹…arctan(nβ‹…uβˆ’1/3)=o(1)β‹…O(1)=o(1)\cdot arctan(n\cdot u^{-1/3})=o(1)\cdot O(1)


Hence

I=I1+I2=I3+(I1βˆ’I3)+I2=I3+o(1)+o(1)I=I_1+I_2=I_3+(I_1-I_3)+I_2=I_3+o(1)+o(1)


where

I3=f(0)∫0nβˆ’1/3d(nx)1+u2x2dx=f(0)β‹…arctan(nβ‹…uβˆ’1/3)=f(0)Ο€2+o(1)I_3=f(0)\displaystyle{\int^{n^{-1/3}}_{0}}\frac{d(nx)}{1+u^2x^2}dx=f(0)\cdot arctan(n\cdot u^{-1/3})=f(0)\frac{\pi}{2}+o(1)


So,


Iβ†’f(0)Ο€2I\to f(0)\frac{\pi}{2} as nβ†’βˆžn\to \infin



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS