∑n=1∞1+n2x2x,x∈[α,1]for anyα<1.Then,fn=1+n2x2x→0 as n→∞Mn=supx∈[α,1]∣fn−f∣=supx∈[α,1]∣1+n2x2x−0∣=supx∈[α,1]∣1+n2x2x∣To get this value, we find the value of x where the given sequence of function is maximum.fn′=(1+n2x2)21−n2x2Now,fn′=0⟹x=n1fn′′=(1+n2x2)32n2x(n2x2−3)fn′′(n1)<0⟹at x=n1, Mn attain maximum.Mn=supx∈[α,1]∣1+n2x2x∣=∣1+n2n21n1∣=2n1→0 as n→∞ Therefore, by Weierstrass M-test the given sequence of function converge.
Comments
Leave a comment