Question #203198

Let {an} be a sequence defined as a1 =3, an+1 = (1/5)an ,show that {an } an converges to zero.


1
Expert's answer
2021-06-11T09:49:34-0400

Question:Let an be a sequence defined as a1 =3, an+1 = (15)an ,show that an  an converges to zero.Solution:first of all, we find some terms of sequencegivena1 =3, an+1 = (15)an ,we have ;a1=3...(1)for a2 , put n=1  in  an+1;a2=(15)a1 put a1 value from (1)a2=(15)(3) a2=(35)...(2) for a3 , put n=2  in  an+1;a3=(15)a2 put a2 value from (2)a2=(15)(35) a2=(352)...(3) for a4 , put n=3  in  an+1;a4=(15)a3 put a2 value from (3)a4=(15)(352) a4=(353) similarly an1=(35n2) for an , put n=(n1)  in  an+1;an=(15)an1 put an1 an=(15)(35n2) an=(35n1) now we show that an  an converges to zero. for check to converges , we take limit of anlimn   an=limn   (35n1) limn   an= (351) limn   an= (35) limn   an= (3) limn   an= 0 hencewe say that, an  an converges to zero. Question:-\\ Let\space {a_n}\space be\space a\space sequence\space defined\space as\space a_1\space =3,\space a_{n+1}\space =\space (\frac{1}{5})a_n\space ,\\ show\space that\space {a_n\space }\space an\space converges\space to\space zero.\\ ------------------------------------- Solution:-\\ first\space of\space all,\space we\space find\space some\space terms\space of\space sequence\\ given\\ a_1\space =3,\space a_{n+1}\space =\space (\frac{1}{5})a_n\space ,\\ we\space have\space ;\\ a_1=3...(1)\\ for\space a_2\space ,\space put\space n=1\space \space in\space \space a_{n+1};\\ a_2=(\frac{1}{5})a_1\space \\ put\space a_1\space value\space from\space (1)\\ a_2=(\frac{1}{5})(3)\space \\ a_2=(\frac{3}{5})...(2)\space \\ for\space a_3\space ,\space put\space n=2\space \space in\space \space a_{n+1};\\ a_3=(\frac{1}{5})a_2\space \\ put\space a_2\space value\space from\space (2)\\ a_2=(\frac{1}{5})(\frac{3}{5})\space \\ a_2=(\frac{3}{5^2})...(3)\space \\ for\space a_4\space ,\space put\space n=3\space \space in\space \space a_{n+1};\\ a_4=(\frac{1}{5})a_3\space \\ put\space a_2\space value\space from\space (3)\\ a_4=(\frac{1}{5})(\frac{3}{5^2})\space \\ a_4=(\frac{3}{5^3})\space \\ similarly\space \\ a_{n-1}=(\frac{3}{5^{n-2}})\space \\ for\space a_n\space ,\space put\space n=(n-1)\space \space in\space \space a_{n+1};\\ a_n=(\frac{1}{5})a_{n-1}\space \\ put\space a_{n-1}\space \\ a_n=(\frac{1}{5})(\frac{3}{5^{n-2}})\space \\ a_n=(\frac{3}{5^{n-1}})\space \\ now\space we\space show\space that\space {a_n\space }\space an\space converges\space to\space zero.\\\space for\space check\space to\space converges\space ,\space we\space take\space limit\space of\space a_n\\ \lim\limits_{n\space \to\space \infin}\space a_n=\lim\limits_{n\space \to\space \infin}\space (\frac{3}{5^{n-1}})\space \\ \lim\limits_{n\space \to\space \infin}\space a_n=\space (\frac{3}{5^{\infin-1}})\space \\ \lim\limits_{n\space \to\space \infin}\space a_n=\space (\frac{3}{5^{\infin}})\space \\ \lim\limits_{n\space \to\space \infin}\space a_n=\space (\frac{3}{\infin})\space \\ \lim\limits_{n\space \to\space \infin}\space a_n=\space 0\space \\ hence\\ we\space say\space that,\space {a_n\space }\space an\space converges\space to\space zero.\\\space


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS