When P is the position that divides [1,5] into four equal parts. The position of [1,5] into these parts are, P=[I1,I2,I3,I4]
Where I1=[1,2], I2=[2,3],I3=[3,4],I4=[4,5]
Now the length of each interval is given by
S1=2−1=1=△x1
S2=3−2=1=△x2
S3=4−3=1=△x3
S4=5−4=1=△x4
Now the downbound of the function f(x) corresponding to each interval is given by
∴f(x)=x2−2
m1=12−2=−1
m2=22−2=2
m3=32−2=7
m4=42−2=14
L(p,f)=∑r=14mr△xr=m1△x1+m2△x2+m3△x3+m4△x4
L(p,f)=−1∗1+2∗1+7∗1+14∗1=−1+2+7+14=22
Now −P=[−I1,−I2,−I3,−I4]
Where I'1=[-1,-2], I'2=[-2,-3],I'3=[-3,-4],I'4=[-4,-5]
The length of each interval = 1=△xr 1⪕r⪕4
The upperbound of f(x)=x2−2 over each interval is given by
∴f(x)=x2−2
m1=(−1)2−2=−1
m2=(−2)2−2=2
m3=(−3)2−2=7
m4=(−4)2−2=14
The upper sum is defined as
U(−p,f)=∑r=14mr△xr
U(−p,f)=−1∗1+2∗1+7∗1+14∗1=−1+2+7+14=22
Hence L(p,f)=U(−p,f) verified
We also know that the upper sum is always greater than the lower sum, hence
L(p,f)⪕U(−p,f) verified
Comments