Question #203192

For the function, f(x) = x2 −2 defined over [1,5], verify : L(P, f ) ≤ U(−P, f )

where P is the partition which divides [1,5] into four equal intervals.


1
Expert's answer
2021-06-15T06:31:04-0400

When P is the position that divides [1,5] into four equal parts. The position of [1,5] into these parts are, P=[I1,I2,I3,I4]P=[I_1, I_2, I_3, I_4]

Where I1=[1,2], I2=[2,3],I3=[3,4],I4=[4,5]

Now the length of each interval is given by

S1=21=1=x1S_1=2-1=1= \triangle x_1

S2=32=1=x2S_2=3-2=1= \triangle x_2

S3=43=1=x3S_3=4-3=1= \triangle x_3

S4=54=1=x4S_4=5-4=1= \triangle x_4

Now the downbound of the function f(x) corresponding to each interval is given by

f(x)=x22\therefore f(x)=x^2-2

m1=122=1m_1=1^2-2=-1

m2=222=2m_2=2^2-2=2

m3=322=7m_3=3^2-2=7

m4=422=14m_4=4^2-2=14

L(p,f)=r=14mrxr=m1x1+m2x2+m3x3+m4x4L(p,f)= \sum_{r=1}^4 m_r \triangle x_r =m_1 \triangle x_1+m_2 \triangle x_2+m_3 \triangle x_3+m_4\triangle x_4

L(p,f)=11+21+71+141=1+2+7+14=22L(p,f) =-1*1+2*1+7*1+14*1 =-1+2+7+14=22


Now P=[I1,I2,I3,I4]-P=[-I_1, -I_2, -I_3, -I_4]

Where I'1=[-1,-2], I'2=[-2,-3],I'3=[-3,-4],I'4=[-4,-5]

The length of each interval = 1=xr   1r41 = \triangle x_r \space \space \space 1 \eqslantless r \eqslantless 4

The upperbound of f(x)=x22f(x)=x^2-2 over each interval is given by

f(x)=x22\therefore f(x)=x^2-2

m1=(1)22=1m_1=(-1)^2-2=-1

m2=(2)22=2m_2=(-2)^2-2=2

m3=(3)22=7m_3=(-3)^2-2=7

m4=(4)22=14m_4=(-4)^2-2=14

The upper sum is defined as

U(p,f)=r=14mrxrU(-p,f)= \sum_{r=1}^4 m_r \triangle x_r

U(p,f)=11+21+71+141=1+2+7+14=22U(-p,f) =-1*1+2*1+7*1+14*1 =-1+2+7+14=22

Hence L(p,f)=U(p,f)L(p,f)=U(-p,f) verified

We also know that the upper sum is always greater than the lower sum, hence

L(p,f)U(p,f)L(p,f)\eqslantless U(-p,f) verified


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS