Question #197916

Define uniform convergence of a sequence of functions. Discuss the uniform convergence of the sequence nx^2+1/nx+1 the interval  [1. 2]

1
Expert's answer
2021-05-26T03:31:59-0400

In a hyper-real context, uniform convergence allows for a simpler description. So, if is infinitely close to for all x in the space of and all infinite m, a sequence converges to f uniformly.(For a related concept of uniform continuity, see micro continuity)

f(x)=nx2+1nx+1f(x)=\frac{nx^2+1}{nx+1}

limxfn(x)=limx[nx2+1nx+1]=limx[nnx2+1nnxn+1n]=limx[x2+1nx+1n]=limx[x2+1x+1]=x\lim\limits_{x \to \infin}f_n(x)=\lim\limits_{x \to \infin}[\frac{nx^2+1}{nx+1}]=\lim\limits_{x \to \infin}[\frac{\frac{n}{n}x^2+\frac{1}{n}}{\frac{nx}{n}+\frac{1}{n}}]=\lim\limits_{x \to \infin}[\frac{x^2+\frac{1}{n}}{x+\frac{1}{n}}]=\lim\limits_{x \to \infin}[\frac{x^2+\frac{1}{\infin}}{x+\frac{1}{\infin}}]= x

When x=0

fn(x)=0f_n(x)=0

Therefore, f(x)=[x if x00 if x=0]f(x)={x \space if \space x \not =0\brack 0 \space if \space x=0}

limxfn(x)=f(x)\lim\limits_{x \to \infin}f_n(x)= f(x) for all x.

To prove that the above convergence is not pointwise

Suppose that fnff_n \to f uniformly

Therefore, ε>0,x>[1,2],NϵN,n>N\exist \varepsilon >0, \exist x>[1,2], \forall N \epsilon \N, \exist n> N

fn(x)f(x)<ε|f_n(x)-f(x)|< \varepsilon

Now , taking ε=110,x=1n\varepsilon = \frac{1}{10}, x=\frac{1}{\sqrt{n}} and n=N+1

Therefore, nx2+1nx+1x=1xnx+1>ε=110|\frac{nx^2+1}{nx+1}-x|=\frac{1-x}{nx+1}>\varepsilon=\frac{1}{10}

Which is a contradiction to the fact that fn(x)f_n(x) converges uniformly

Hence , fn(x)f_n(x) does not converge to f uniformly.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS