We know , if a function is Lipschitz function then it is bounded variation.Given,f1(x)=sinx.∣f1(x1)−f1(x2)∣=∣sin(x1)−sin(x2)∣(By trigonometry identity=∣2cos(2x1+x2)sin(2x1−x2)∣≤∣2∣.1.∣2x1−x2∣=∣x1−x2∣ we get k=1. Therefore, the given function is lipschitz function.This implies, the given function is bounded variation.Given,f2(x)=cosx.∣f1(x1)−f1(x2)∣=∣cos(x1)−cos(x2)∣(By trigonometry identity=∣−2sin(2x1+x2)sin(2x1−x2)∣≤∣2∣.1.∣2x1−x2∣=∣x1−x2∣ we get k=1. Therefore, the given function is lipschitz function.This implies, the given function is bounded variation.
Comments