Question #197351

Show that sinx and cosx are a bound variation on a finite interval


1
Expert's answer
2021-05-24T17:19:34-0400

We know , if a function is Lipschitz function then it is bounded variation.Given,f1(x)=sinx.f1(x1)f1(x2)=sin(x1)sin(x2)(By trigonometry identity=2cos(x1+x22)sin(x1x22)2.1.x1x22=x1x2 we get k=1. Therefore, the given function is lipschitz function.This implies, the given function is bounded variation.Given,f2(x)=cosx.f1(x1)f1(x2)=cos(x1)cos(x2)(By trigonometry identity=2sin(x1+x22)sin(x1x22)2.1.x1x22=x1x2 we get k=1. Therefore, the given function is lipschitz function.This implies, the given function is bounded variation.\text{We know , if a function is Lipschitz function then it is bounded variation.}\newline \text{Given,} f_1(x)=sinx. \,\\ |f_1(x_1)-f_1(x_2)|\newline =|sin(x_1)-sin(x_2)|\hspace{1cm}(\text{By trigonometry identity}\newline =|2 cos(\frac{x_1+x_2}{2}) sin(\frac{x_1-x_2}{2})|\newline \leq|2|.1.|\frac{x_1-x_2}{2}|\newline =|x_1-x_2|\newline \text{ we get k=1.}\newline \text{ Therefore, the given function is lipschitz function.}\newline \text{This implies, the given function is bounded variation.} \text{Given,} f_2(x)=cosx.\\ |f_1(x_1)-f_1(x_2)|\newline =|cos(x_1)-cos(x_2)|\hspace{1cm}(\text{By trigonometry identity}\newline =|-2 sin(\frac{x_1+x_2}{2}) sin(\frac{x_1-x_2}{2})|\newline \leq|2|.1.|\frac{x_1-x_2}{2}|\newline =|x_1-x_2|\newline \text{ we get k=1.}\newline \text{ Therefore, the given function is lipschitz function.}\newline \text{This implies, the given function is bounded variation.}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS