Given f(x,y)=x4+y2x2y2 when(x,y)=(0,0)=0,when (x,y)=(0,0)We find the partial derivative of f(x,y) w.r.t′x′, anarbitrary (x,y) by Using ∂x∂(vu)=v2vux−uvx,we getfx(x,y)=(x4+y2)2(x4+y2)∂x∂(x2y2)−(x2y2)∂x∂(x4+y2)=(x4+y2)2(x4+y2)(2xy2)−(x2y2)4x3=(x4+y2)2(2x5y2+2xy4−4x5y2)=(x4+y2)22xy4−2x5y2)⇒ fx(x,y)=(x4+y2)22xy4−2x5y2)We find the partial derivative of f(x,y) w.r.t′y′, anarbitrary (x,y) by Using ∂y∂(vu)=v2vuy−uvy,we getfy(x,y)=(x4+y2)2(x4+y2)∂y∂(x2y2)−(x2y2)∂y∂(x4+y2)=(x4+y2)2(x4+y2)(2x2y)−(x2y2)(2y)=(x4+y2)22x6y⇒ fy(x,y)=(x4+y2)22x6yTo find the partial derivative of f w.rt.′x′ at(0,0)considerlimh→0hf(0+h,0)−f(0,0)=limh→0hh4+0(h2(0))−0(By the definition of f(x,y))=0⇒fx(0,0)=0To find the partial derivative of f w.rt.′y′ at(0,0)considerlimk→0kf(0,0+k)−f(0,0)=limk→0k04+k2(02(k2))−0(By the definition of f(x,y))=0⇒fy(0,0)=0To examine the continuity of fx(x,y) at (0,0)Consider the limx→0,y→0fx(x,y)along y=x2⇒limx→0(x4+(x2)2)22x(x2)4)−2x5(x2)2)=limx→04(x8)0=0⇒fx(0,0)=0=limx→0,y→0fx(x,y)∴fx(x,y) is continuous at (0,0)To examine the continuity of fy(x,y) at (0,0)Consider the limx→0,y→0fy(x,y)along y=x2⇒limx→0,y→0(x4+y2)22x6y=limx→0(x4+(x2)2)2)2x6(x2)=limx→04(x8)2x8=1/2⇒fy(0,0)=0=limx→0,y→0fy(x,y)=21 ∴fy(x,y) is not continuous at (0,0)
Comments
Leave a comment