Question #170538

Let m,n be non negative integers and.let i, j element of N be even . let f:R2 to R be defined by f(0,0)=0 and

f(x,y) = (xmyn)/(xi+yj) for (x,y) not equal to (0,0) .show that f is continuous at (0,0) if and only if ,if mj+mi >ij

1
Expert's answer
2021-03-30T07:34:39-0400

Consider the path x(t)=tj,y(t)=ktix(t)=t^j, y(t)=kt^i, which approaches to (0,0) as t tends to 0.

If f(x,t) is a continuous at (0,0) then f(x(t),y(t))=(1+kj)1tmj+niijf(x(t),y(t))=(1+k^j)^{-1}t^{mj+ni-ij} must have a bounded limit as t tends to 0. Hence it must be mj+niij0mj+ni-ij\geq 0 . and then

limt0f(x(t),y(t))={0ifmj+niij>0(1+kj)1ifmj+niij=0}\lim\limits_{t\to 0}f(x(t),y(t))=\begin{Bmatrix} 0 & if\, mj+ni-ij> 0\\ (1+k^j)^{-1} & if\, mj+ni-ij= 0 \end{Bmatrix}

So, if mj+niij=0mj+ni-ij= 0 then the limit value varies depending on k, hence, lim(x,y)(0,0)f(x,y)\lim\limits_{(x,y)\to (0,0)}f(x,y) doesn't exist and the function may not be continuous at (0,0).

So, the necessity of condition mj+niij>0mj+ni-ij> 0 or, equivalently, mi+nj>1\frac{m}{i}+\frac{n}{j}>1 is proved.

Let us show now that this condition is sufficient for the function f(x,y) to be continuous at (0,0).

Let s=mi+njs=\frac{m}{i}+\frac{n}{j}, p=ismp=\frac{is}{m}, q=jsn.q=\frac{js}{n}. Then 1p+1q=1\frac{1}{p}+\frac{1}{q}=1.

Since i and j are even positive integers, xi+yj=xi+yjx^i+y^j=|x|^i+|y|^j for every x,y.

By Young's inequality for products we have

xi+yj=(xm/s)p+(yn/s)q=(p1/pxm/s)pp+(q1/qyn/s)qqp1/pq1/qxm/syn/s=C(xmyn)1/s|x|^i+|y|^j=(|x|^{m/s})^p+(|y|^{n/s})^q=\frac{(p^{1/p}|x|^{m/s})^p}{p}+\frac{(q^{1/q}|y|^{n/s})^q}{q}\geq p^{1/p}q^{1/q}|x|^{m/s}|y|^{n/s}=C(|x|^m |y|^n)^{1/s}

where C=p1/pq1/qC=p^{1/p}q^{1/q}. So,

f(x,y)=xmynxi+yjC1(xmyn)11/s0|f(x,y)|=\frac{|x|^m|y|^n}{|x|^i+|y|^j}\leq C^{-1}(|x|^m|y|^n)^{1-1/s}\to 0

Therefore, if mj+niij>0mj+ni-ij> 0 then f(x,y)0=f(0,0)f(x,y)\to0=f(0,0) as (x,y) tends to (0,0), hence, f(x,y) is continuous at (0,0).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS