If (an)infinityn=1 is a sequence of real numbers satisfying an+12 =2an-1, then,
limn->infinity an = ?
Let a1=p,a_1=p,a1=p, so
a2=2p−1,a_2=\sqrt{2p-1},a2=2p−1,
a3=22p−1−1,a_3=\sqrt{2\sqrt{2p-1}-1},a3=22p−1−1,
a4=222p−1−1−1,...,a_4=\sqrt{2\sqrt{2\sqrt{2p-1}-1}-1}, ...,a4=222p−1−1−1,..., (can be seen, that p⩾1p\geqslant 1p⩾1)
ak∼(2p)1k−1.a_k\sim (2p)^{\frac{1}{k-1}}.ak∼(2p)k−11.
So limn→∞an=limn→∞(2p)1n−1=limn→∞21n−1p1n−1=1⋅1=1.\underset{n→\infin}{lim}a_n=\underset{n→\infin}{lim}(2p)^{\frac{1}{n-1}}=\underset{n→\infin}{lim}2^{\frac{1}{n-1}}p^{\frac{1}{n-1}}=1\cdot1=1.n→∞liman=n→∞lim(2p)n−11=n→∞lim2n−11pn−11=1⋅1=1.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments