Question #146276

If (an)infinityn=1 is a sequence of real numbers satisfying an+12 =2an-1, then,

limn->infinity an = ?


1
Expert's answer
2020-11-29T17:33:53-0500

Let a1=p,a_1=p, so

a2=2p1,a_2=\sqrt{2p-1},

a3=22p11,a_3=\sqrt{2\sqrt{2p-1}-1},

a4=222p111,...,a_4=\sqrt{2\sqrt{2\sqrt{2p-1}-1}-1}, ..., (can be seen, that p1p\geqslant 1)

ak(2p)1k1.a_k\sim (2p)^{\frac{1}{k-1}}.

So limnan=limn(2p)1n1=limn21n1p1n1=11=1.\underset{n→\infin}{lim}a_n=\underset{n→\infin}{lim}(2p)^{\frac{1}{n-1}}=\underset{n→\infin}{lim}2^{\frac{1}{n-1}}p^{\frac{1}{n-1}}=1\cdot1=1.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS