If (an)infinityn=1 is a sequence of real numbers satisfying an+12 =2an-1, then,
limn->infinity an = ?
Let "a_1=p," so
"a_2=\\sqrt{2p-1},"
"a_3=\\sqrt{2\\sqrt{2p-1}-1},"
"a_4=\\sqrt{2\\sqrt{2\\sqrt{2p-1}-1}-1}, ...," (can be seen, that "p\\geqslant 1")
"a_k\\sim (2p)^{\\frac{1}{k-1}}."
So "\\underset{n\u2192\\infin}{lim}a_n=\\underset{n\u2192\\infin}{lim}(2p)^{\\frac{1}{n-1}}=\\underset{n\u2192\\infin}{lim}2^{\\frac{1}{n-1}}p^{\\frac{1}{n-1}}=1\\cdot1=1."
Comments
Leave a comment