Answer to Question #123126 in Real Analysis for Wachira Ann Wangari

Question #123126
Let f(x)=|x|^3. Show that f'''(0) does not exist
1
Expert's answer
2020-06-22T17:18:38-0400

f(x)=x3={x3 if x0x3 if x<0So,limx0+x3=limx0+x3=0  and  limx0x3=limx0(x)3=0 f(x)=x3  is continuous at x=0To show thatf(x)=x3 is not differentiablef(0)=limh0f(0+h)f(0)hlimh00+h303h=limh0h3h={0 if h>00 if h<0 f(x) exist at x=0f(x)={3x2 if x03x2 if x<0In the same way, we find that the second derivative is exist at x=0f(x)={6x if x06x if x<0Now we are checking the third derivative at x=0f(0)+=limx0+f(x)=6(0+h)f(0)h=6f(0)=limx0f(x)=6(0+h)f(0)h=6 f(0)does not existf(x)=|x|^3=\left\{\begin{array}{ll}x^3 & \text { if } x \geq 0 \\ -x^3 & \text { if } x<0\end{array}\right.\\[1 em] So, \lim _{x \rightarrow 0^{+}}|x|^3=\lim _{x \rightarrow 0^{+}} x^3=0 ~~\text{and} ~~\lim _{x \rightarrow 0^{-}}|x|^3=\lim _{x \rightarrow 0^{-}}(-x)^3=0\\[1 em] \therefore ~f(x)=|x|^3~~\text{is continuous at x=0}\\[1 em] \text{To show that} f(x)=|x|^3 ~\text{is not differentiable} \\[1 em] f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}\\[1 em] \begin{array}{l} \lim _{h \rightarrow 0} \frac{|0+h|^3-|0|^3}{h}=\lim _{h \rightarrow 0} \frac{|h|^3}{h} =\left\{\begin{array}{ll} 0 & \text { if } h>0 \\ 0 & \text { if } h<0 \end{array}\right. \end{array}\\[1 em] \therefore ~f^{\prime}(x) \text{ exist at }x=0\\[1 em] f^{{\prime }}(x)=\left\{\begin{array}{ll}3x^2 & \text { if } x \geq 0 \\ -3x^2 & \text { if } x<0\end{array}\right.\\[1 em] \text{In the same way, we find that the second derivative is exist at}~x=0\\[1 em] f^{{\prime }{\prime }}(x)=\left\{\begin{array}{ll}6x & \text { if } x \geq 0 \\ -6x & \text { if } x<0\end{array}\right.\\[1 em] \text{Now we are checking the third derivative at}~x=0\\[1 em] f^{{\prime }{\prime }{\prime }}(0)^{+}=\lim _{x \rightarrow 0^{+}}f^{{\prime }{\prime }}(x)= \frac{6(0+h)-f(0)}{h}=6 \\[1 em] f^{{\prime }{\prime }{\prime }}(0)^{-}=\lim _{x \rightarrow 0^{-}}f^{{\prime }{\prime }}(x)= \frac{-6(0+h)-f(0)}{h}=-6 \\[1 em] \therefore~f^{{\prime }{\prime }{\prime }}(0) \text{does not exist}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment