f(x)=∣x∣3={x3−x3 if x≥0 if x<0So,limx→0+∣x∣3=limx→0+x3=0andlimx→0−∣x∣3=limx→0−(−x)3=0∴f(x)=∣x∣3is continuous at x=0To show thatf(x)=∣x∣3is not differentiablef′(0)=limh→0hf(0+h)−f(0)limh→0h∣0+h∣3−∣0∣3=limh→0h∣h∣3={00 if h>0 if h<0∴f′(x) exist at x=0f′(x)={3x2−3x2 if x≥0 if x<0In the same way, we find that the second derivative is exist atx=0f′′(x)={6x−6x if x≥0 if x<0Now we are checking the third derivative atx=0f′′′(0)+=limx→0+f′′(x)=h6(0+h)−f(0)=6f′′′(0)−=limx→0−f′′(x)=h−6(0+h)−f(0)=−6∴f′′′(0)does not exist
Comments
Leave a comment