Given that {vn} be a sequence in R2 .
Let {vn}=(xn,yn) and v=(x,y) .
Let limn→∞vn=v
Claim : xn→x and yn→y as n→∞
i,e limn→∞xn=x and limn→∞yn=y .
As limn→∞vn=v ,so for a given ϵ>0 there exist a K∈N
such that ∣∣vn−v∣∣∞<ϵ ∀n≥K
⟹∣∣xn−x,yn−y∣∣∞<ϵ ∀n≥K
⟹max{∣xn−x∣,∣yn−y∣}<ϵ ∀n≥K
\implies |x_n-x|<\epsilon \ and \ |y_n-y|<\epsilon \ ∀n≥K
Hence limn→∞xn=x and limn→∞yn=y.
Conversely , assume that limn→∞xn=x and limn→∞yn=y
Claim: limn→∞vn=v .
Therefore , for any ϵ>0,∃ N1,N2 such that
∣xn−x∣<ϵ for all n≥N1
and ∣yn−y∣<ϵ for all n≥N2 .
Now , ∣∣vn−v∣∣∞=∣∣xn−x,yn−y∣∣∞
=Max{∣xn−x∣,∣yn−y∣}<ϵ ∀n≥N
Where N=Max{N1,N2} .
Hence , limn→∞vn=v.
Comments