Given that "\\{ v_n\\}" be a sequence in "\\R^2" .
Let "\\{ v_n\\}=(x_n,y_n)" and "v=(x,y)" .
Let "lim_{n\\to \\infty} v_n=v"
Claim : "x_n\\rightarrow x \\ and \\ y_n\\rightarrow y \\ as \\ n\\rightarrow \\infty"
i,e "lim_{n\\to \\infty} x_n=x \\ and \\ lim_{n\\to \\infty} y_n=y" .
As "lim_{n\\to \\infty} v_n=v" ,so for a given "\\epsilon >0" there exist a "K\\in \\N"
such that "||v_n-v||_{\\infty}<\\epsilon \\ \\forall n \\geq K"
"\\implies ||x_n-x,y_n-y||_{\\infty}<\\epsilon \\ \\forall n \\geq K"
"\\implies max\\{ |x_n-x|,|y_n-y|\\}<\\epsilon" "\\forall n \\geq K"
"\\implies |x_n-x|<\\epsilon \\ and \\ |y_n-y|<\\epsilon \\" "\\forall n\\geq K"
Hence "lim_{ n\\to \\infty} x_n=x \\ and \\ lim_{n\\to \\infty} y_n=y."
Conversely , assume that "lim_{n\\to \\infty}x_n=x \\ and \\ lim_{ n\\to \\infty}y_n=y"
Claim: "lim_{n\\to \\infty} v_n=v" .
Therefore , for any "\\epsilon >0 , \\exist \\ N_1 , N_2" such that
"| x_n-x|<\\epsilon" for all "n\\geq N_1"
and "|y_n-y|<\\epsilon" for all "n\\geq N_2" .
Now , "||v_n-v||_{\\infty}=||x_n-x,y_n-y||_{\\infty}"
"=Max \\{ |x_n-x|,|y_n-y|\\} <\\epsilon" "\\forall n\\geq N"
Where "N=Max\\{ N_1,N_2\\}" .
Hence , "lim_{n\\to \\infty}v_n=v."
Comments
Leave a comment