Question #122936
Let {vn} be a sequence in R2
, say vn = (xn, yn). Give R2
the || ||∞
norm. Show that limn→∞ vn → v if and only if limn→∞ xn = x and
limn→∞ yn = y where v = (x, y).
1
Expert's answer
2020-06-22T17:40:08-0400

Given that {vn}\{ v_n\} be a sequence in R2\R^2 .

Let {vn}=(xn,yn)\{ v_n\}=(x_n,y_n) and v=(x,y)v=(x,y) .


Let limnvn=vlim_{n\to \infty} v_n=v

Claim : xnx and yny as nx_n\rightarrow x \ and \ y_n\rightarrow y \ as \ n\rightarrow \infty

i,e limnxn=x and limnyn=ylim_{n\to \infty} x_n=x \ and \ lim_{n\to \infty} y_n=y .

As limnvn=vlim_{n\to \infty} v_n=v ,so for a given ϵ>0\epsilon >0 there exist a KNK\in \N

such that vnv<ϵ nK||v_n-v||_{\infty}<\epsilon \ \forall n \geq K

    xnx,yny<ϵ nK\implies ||x_n-x,y_n-y||_{\infty}<\epsilon \ \forall n \geq K

    max{xnx,yny}<ϵ\implies max\{ |x_n-x|,|y_n-y|\}<\epsilon nK\forall n \geq K

\implies |x_n-x|<\epsilon \ and \ |y_n-y|<\epsilon \ nK\forall n\geq K

Hence limnxn=x and limnyn=y.lim_{ n\to \infty} x_n=x \ and \ lim_{n\to \infty} y_n=y.

Conversely , assume that limnxn=x and limnyn=ylim_{n\to \infty}x_n=x \ and \ lim_{ n\to \infty}y_n=y

Claim: limnvn=vlim_{n\to \infty} v_n=v .

Therefore , for any ϵ>0, N1,N2\epsilon >0 , \exist \ N_1 , N_2 such that

xnx<ϵ| x_n-x|<\epsilon for all nN1n\geq N_1

and yny<ϵ|y_n-y|<\epsilon for all nN2n\geq N_2 .

Now , vnv=xnx,yny||v_n-v||_{\infty}=||x_n-x,y_n-y||_{\infty}

=Max{xnx,yny}<ϵ=Max \{ |x_n-x|,|y_n-y|\} <\epsilon nN\forall n\geq N

Where N=Max{N1,N2}N=Max\{ N_1,N_2\} .

Hence , limnvn=v.lim_{n\to \infty}v_n=v.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS