Given that for any "\\epsilon>0" , there exists M such that "|x_n-y_n|<\\epsilon" for all "n\\geq M" ,
"\\implies -\\epsilon < x_n-y_n < \\epsilon \\implies x_n-\\epsilon<y_n<x_n+\\epsilon" for all "n\\geq M" .
Now, given "\\{x_n\\}" is a convergent sequence, "\\implies \\exist M : |x_n|<\\epsilon_1 \\ \\forall n\\geq M_1" .
So, "\\exist M_2:|y_n|<max\\{\\epsilon,\\epsilon_1\\} \\ \\forall \\ n\\geq M_2 = max\\{M,M_1\\}" .
Hence "\\{y_n\\}" is a convergent sequence.
Comments
Leave a comment