Question #109856
Use Lagrange’s mean value theorem to prove that
x-x^2/2<log(1+x)<x-x^2/2(1+x) if x>0
1
Expert's answer
2020-04-20T12:21:44-0400

According to Lagrange’s Theorem, there exists at least one point ‘c’ on the open interval (a,b), such as

f(c)=f(b)f(a)baf'(c)=\frac{f(b)-f(a)}{b-a}  

Let's prove that log(x+1)>xx22\log(x+1)>x-\frac{x^2}{2}

Let's denote f=log(x+1)+x22f=\log(x+1)+\frac{x^2}{2}

Using Lagrange’s Mean Value Theorem for function f, will lead us to

c(0,b)\exist c\in (0,b) such as f(c)=f(b)f(0)b0=log(b+1)+b22bf'(c)=\frac{f(b)-f(0)}{b-0}=\frac{\log(b+1)+\frac{b^2}{2}}{b}

Therefore

f(c)=1c+1+c=log(b+1)+b22bf'(c)=\frac{1}{c+1}+c=\frac{\log(b+1)+\frac{b^2}{2}}{b}

1c+1+c=1+c21+c>1\frac{1}{c+1}+c=1+\frac{c^2}{1+c}>1

Hence

log(b+1)+b22b>1\frac{\log(b+1)+\frac{b^2}{2}}{b}>1

log(b+1)+b22>b\log(b+1)+\frac{b^2}{2}>b

So log(x+1)>xx22\log(x+1)>x-\frac{x^2}{2}


Let's prove that log(x+1)<xx22(1+x)\log(x+1)<x-\frac{x^2}{2(1+x)}

Let's denote f=log(x+1)+x22(x+1)f=\log(x+1)+\frac{x^2}{2(x+1)}

Using Lagrange’s Mean Value Theorem for function f, will lead us to c(0,b)\exist c\in (0,b) such as

log(b+1)+b22(b+1)b=f(c)=1c+1+2c2(c+1)2c24(1+c)2=12c24(1+c)2<1\frac{\log(b+1)+\frac{b^2}{2(b+1)}}{b}=f'(c)=\frac{1}{c+1}+\frac{2c2(c+1)-2c^2}{4(1+c)^2}=1-\frac{2c^2}{4(1+c)^2}<1

Hence log(b+1)+b22(b+1)b<1\frac{\log(b+1)+\frac{b^2}{2(b+1)}}{b}<1

log(b+1)+b22(b+1)<b\log(b+1)+\frac{b^2}{2(b+1)}<b

So log(x+1)<xx22(1+x)\log(x+1)<x-\frac{x^2}{2(1+x)}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS