Answer to Question #109842 in Real Analysis for Chinmoy Kumar Bera

Question #109842
the following series 1-1/2^2-1/3^2+1/4^2-1/5^2-1/6^2+... is convergent or not?
1
Expert's answer
2020-04-15T15:11:30-0400

1122132+142152162+...()1-\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{4^2}-\frac{1}{5^2}-\frac{1}{6^2}+...(*)

Consider a series of modules

1+122+132+142+152+162+...==n=11n21+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+...=\\ =\sum\limits_{n=1}^{\infty}\frac{1}{n^2}

A series n=11nα\sum\limits_{n=1}^{\infty}\frac{1}{n^{\alpha}} is convergent if α>1\alpha>1 ,

 divergent if α1\alpha \leq1 .

 In our case α=2>1\alpha=2>1 ,

 so the series of modules is convergent, hence the series (*) is

 also convergent.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment