"1-\\frac{1}{2^2}-\\frac{1}{3^2}+\\frac{1}{4^2}-\\frac{1}{5^2}-\\frac{1}{6^2}+...(*)"
Consider a series of modules
"1+\\frac{1}{2^2}+\\frac{1}{3^2}+\\frac{1}{4^2}+\\frac{1}{5^2}+\\frac{1}{6^2}+...=\\\\\n=\\sum\\limits_{n=1}^{\\infty}\\frac{1}{n^2}"
A series "\\sum\\limits_{n=1}^{\\infty}\\frac{1}{n^{\\alpha}}" is convergent if "\\alpha>1" ,
divergent if "\\alpha \\leq1" .
In our case "\\alpha=2>1" ,
so the series of modules is convergent, hence the series (*) is
also convergent.
Comments
Leave a comment