Question #109841
Let a function f :R to R be defined by
f(x)={2if x belong to Q,4 if x does not belong to Q

CHECK WHETHER f is continuous on B
Ï
Î
=
Q
Q
4, if x
2, if x
f x
Check whether f is continuous on B.
1
Expert's answer
2020-04-15T17:50:32-0400

Let a function ,

f:RRf:\R\rightarrow \R defined by

f(x)={2ifxQ4ifxQf(x)=\begin{cases} 2 & \text{if} & x\in Q\\ 4 &\text{if} &x\notin Q \end{cases}


Claim: ff is discontinue at every point of R\R .

Case:1

Let aa be any rational number so that f(a)=2f(a)=2 .

Then the neighborhood of (a1n,a+1n)(a-\frac{1}{n},a+\frac{1}{n}) of aa contains an irrational number an for each nNa_n \ \text{for each} \ n\in\N .Since irrational number are dense in R\R .

i,e , an(a1n,a+1n),  nNa_n\in(a-\frac{1}{n},a+\frac{1}{n}) , \ \forall \ n\in \N

    a1n<an<a+1n ,  nN\implies a-\frac{1}{n}<a_n<a+\frac{1}{n} \ , \ \forall \ n\in \N

    ana<1n , nN\implies \mid a_n -a\mid<\frac{1}{n} \ , \forall \ n\in \N .

    ana0 as n\implies \mid a_n-a\mid \rightarrow0 \ \text{as} \ n\rightarrow \infin

    ana0 as n\implies a_n-a \rightarrow0 \ \text{as} \ n\rightarrow\infin

    ana as  n\implies a_n\rightarrow a \ \text{as} \ \ n\rightarrow \infin

    (an) converges to  a\implies (a_n) \ \text{converges to } \ a .

Now , (an)=4 , n as an(a_n)=4 \ ,\forall \ n\ \text{as} \ a_n is irrational and f(a)=2f(a)=2 as aa is rational.

limnf(an)=4f(a).\therefore \text{lim}_{n\to \infin} f(a_n)=4\neq f(a).

i,e, (f(an))(f(a_n)) does not converges to f(a) when ana.f(a) \ \text{when} \ a_n\rightarrow a.

Thus , ff is discontinuous at all rational points a.a.


Case:2

Let bb be any irrational number so that f(b)=4.f(b)=4.

Since rational number are also dense in real number. As explained above ,we can choose a rational number bnb_n such that

bnb<1n,  nN\mid b_n-b\mid<\frac{1}{n} ,\ \forall \ n\in \N .

    bnb as n\implies b_n\rightarrow b \ \text{as} \ n\rightarrow \infin .

    (bn) converges to  b\implies (b_n) \ \text{converges to } \ b

Now, f(bn)=2,  nN as bnf(b_n)=2 ,\ \forall \ n\in\N \ \text{as} \ b_n is rational and f(b)=4.f(b)=4.

limxf(bn)=2f(b).\therefore \text{lim}_{x\to\infin} f(b_n)=2\neq f(b).

    (f(bn))\implies (f(b_n)) does not converges to f(b) when bnb.f(b) \ \text{when} \ b_n\rightarrow b.

Thus,the function ff is discontinuous at all irrational points bb .

Hence the given function ff is discontinuous at all point of R\R .

So in particular on any set BB .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS