1) f′=12x2−8x−7f'=12x^2-8x-7f′=12x2−8x−7
f′=0 ⟺ x1=−12;x2=76f'=0\iff x_1=-\frac{1}{2}; x_2=\frac{7}{6}f′=0⟺x1=−21;x2=67
both points are in the interval [−12;2-\frac{1}{2};2−21;2 ]
2) limx→∞(x+1)−n={0n>01n=0∞n<0\lim\limits_{x\to \infty}(x+1)^{-n}=\left\{\begin{matrix} 0 & n>0 \\ 1 & n=0 \\ \infty& n<0 \end{matrix}\right.x→∞lim(x+1)−n=⎩⎨⎧01∞n>0n=0n<0
the limit doesn't exist for all negative n
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments