Answer to Question #201514 in Quantitative Methods for Dhruv rawat

Question #201514

Use simpson's method to approximate

8

∫ (x^2-x+3)dx with 8 sub-interval



1
Expert's answer
2021-06-02T09:18:24-0400

Approximate the integral


08(x2x+3)dx\displaystyle\int_{0}^{8}(x^2-x+3)dx

with n=8n=8 using the Simpson's rule.


abf(x)dxΔx3(f(x0)+4f(x1)+2f(x2)+...\displaystyle\int_{a}^{b}f(x)dx\approx\dfrac{\Delta x}{3}(f(x_0)+4f(x_1)+2f(x_2)+...

+2f(xn2)+4f(xn1+f(xn))+2f(x_{n-2})+4f(x_{n-1}+f(x_n))

where Δx=ban\Delta x=\dfrac{b-a}{n}

We have that a=0,b=8,n=8.a=0, b=8, n=8. Therefore Δx=808=1.\Delta x=\dfrac{8-0}{8}=1.

Divide the interval[0,8][0, 8]into n=8n=8 subintervals of the length Δx=1\Delta x=1 with the following endpoints: a=0,1,2,3,4,5,6,7,8=b.a=0, 1, 2, 3, 4, 5, 6, 7, 8=b.

Now, just evaluate the function at these endpoints.


f(x0)=f(0)=3f(x_0)=f(0)=3

4f(x1)=4f(1)=124f(x_1)=4f(1)=12

2f(x2)=2f(2)=102f(x_2)=2f(2)=10

4f(x3)=4f(3)=364f(x_3)=4f(3)=36

2f(x4)=2f(4)=302f(x_4)=2f(4)=30

4f(x5)=4f(5)=924f(x_5)=4f(5)=92

2f(x6)=2f(6)=662f(x_6)=2f(6)=66

4f(x7)=4f(7)=1804f(x_7)=4f(7)=180

f(x8)=f(8)=59f(x_8)=f(8)=59


13(3+12+10+36+30+92+66+180+59)\dfrac{1}{3}(3+12+10+36+30+92+66+180+59)

=4883162.6667=\dfrac{488}{3}\approx162.6667

08(x2x+3)dx4883162.6667\displaystyle\int_{0}^{8}(x^2-x+3)dx\approx\dfrac{488}{3}\approx162.6667


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment