F = ∫ 0 5 e x + x F= \int_0^5 ex +\sqrt{x} F = ∫ 0 5 e x + x
Trapezium rule:
∫ x 0 x n f ( x ) d x = 1 2 h [ y 0 + y n + 2 ( y 1 + y 2 + . . . y n ) ] \displaystyle{\int^{x_n}_{x_0}}f(x)dx=\frac{1}{2}h[y_0+y_n+2(y_1+y_2+...y_n)] ∫ x 0 x n f ( x ) d x = 2 1 h [ y 0 + y n + 2 ( y 1 + y 2 + ... y n )]
Value of e = 2.718
Now:
y 0 = f ( 0 ) = 0 y_0=f(0)=0 y 0 = f ( 0 ) = 0
y 1 = f ( 1 ) = 2.718 y_1=f(1)=2.718 y 1 = f ( 1 ) = 2.718
y 2 = f ( 2 ) = 6.85 y_2=f(2)=6.85 y 2 = f ( 2 ) = 6.85
y 3 = f ( 3 ) = 9.88 y_3=f(3)=9.88 y 3 = f ( 3 ) = 9.88
y 4 = f ( 4 ) = 12.87 y_4=f(4)=12.87 y 4 = f ( 4 ) = 12.87
y 5 = f ( 5 ) = 15.82 y_5=f(5)=15.82 y 5 = f ( 5 ) = 15.82
Let the value of h = 1 ,then:
∫ 0 5 e x + x = 1 2 [ 0 + 15.82 + 2 ( 2.718 + 6.85 + 9.88 + 12.87 ) ] \int_0^5ex+ \sqrt{x} =\dfrac{1}{2} [0+15.82+2(2.718+6.85+9.88+12.87)] ∫ 0 5 e x + x = 2 1 [ 0 + 15.82 + 2 ( 2.718 + 6.85 + 9.88 + 12.87 )]
∫ 0 5 e x + x = 40.228 \int_0^5ex+ \sqrt{x} =40.228 ∫ 0 5 e x + x = 40.228
Simpson’s rule:
∫ x 0 x n f ( x ) d x = 1 3 h [ y 0 + 4 y 1 + 2 y 2 + 4 y 3 + 2 y 4 + . . . + 4 y n − 1 + y n ] \displaystyle{\int^{x_n}_{x_0}}f(x)dx=\frac{1}{3}h[y_0+4y_1+2y_2+4y_3+2y_4+...+4y_{n-1}+y_n] ∫ x 0 x n f ( x ) d x = 3 1 h [ y 0 + 4 y 1 + 2 y 2 + 4 y 3 + 2 y 4 + ... + 4 y n − 1 + y n ]
Let h = 0.5 ,as n is even here so n = 10
y 0 = f ( 0 ) = 0 y_0=f(0)= 0 y 0 = f ( 0 ) = 0
y 1 = f ( 0.5 ) = 2.066 y_1= f(0.5)= 2.066 y 1 = f ( 0.5 ) = 2.066
y 2 = f ( 1 ) = 2.718 y_2= f(1)=2.718 y 2 = f ( 1 ) = 2.718
y 3 = f ( 1.5 ) = 5.30 y_3= f(1.5)= 5.30 y 3 = f ( 1.5 ) = 5.30
y 4 = f ( 2 ) = y_4= f(2)= y 4 = f ( 2 ) = 6.85 6.85 6.85
y 5 = f ( 2.5 ) = y_5= f(2.5)= y 5 = f ( 2.5 ) = 8.37 8.37 8.37
y 6 = f ( 3 ) = 9.88 y_6= f(3)= 9.88 y 6 = f ( 3 ) = 9.88
y 7 = f ( 3.5 ) = 11.38 y_7= f(3.5)= 11.38 y 7 = f ( 3.5 ) = 11.38
y 8 = f ( 4 ) = 12.87 y_8= f(4)= 12.87 y 8 = f ( 4 ) = 12.87
y 9 = f ( 4.5 ) = 14.35 y_9= f(4.5)= 14.35 y 9 = f ( 4.5 ) = 14.35
y 10 = f ( 5 ) = 15.82 y_{10}= f(5)= 15.82 y 10 = f ( 5 ) = 15.82
Putting the values in above formula:
∫ 0 5 e x + x = 0.5 3 [ 0 + 4 ( 2.066 ) + 2 ( 2.718 ) + 4 ( 5.30 ) + 2 ( 6.85 ) \int_0^5 ex+\sqrt{x}= \dfrac{0.5}{3}[0+4(2.066)+2(2.718)+4(5.30)+2(6.85) ∫ 0 5 e x + x = 3 0.5 [ 0 + 4 ( 2.066 ) + 2 ( 2.718 ) + 4 ( 5.30 ) + 2 ( 6.85 )
4 ( 8.317 ) + 2 ( 9.88 ) + 4 ( 11.38 ) + 2 ( 12.87 ) + 4 ( 14.35 ) + 15.82 4(8.317)+2(9.88)+4(11.38)+2(12.87)+4(14.35)+15.82 4 ( 8.317 ) + 2 ( 9.88 ) + 4 ( 11.38 ) + 2 ( 12.87 ) + 4 ( 14.35 ) + 15.82
= 41.018 = 41.018 = 41.018
Mid ordinate rule:
for n=5, h=1
∫ 0 5 e x + x = h [ y ( 0.5 ) + y ( 1.5 ) + y ( 2.5 ) + y ( 3.5 ) + y ( 4.5 ) ] \int_0^5 ex+ \sqrt{x} = h[y(0.5)+y(1.5)+y(2.5)+y(3.5)+y(4.5)] ∫ 0 5 e x + x = h [ y ( 0.5 ) + y ( 1.5 ) + y ( 2.5 ) + y ( 3.5 ) + y ( 4.5 )]
= = = 1 [ 2.066 + 5.30 + 8.37 + 11.38 + 14.35 ] 1[2.066+5.30+8.37+11.38+14.35] 1 [ 2.066 + 5.30 + 8.37 + 11.38 + 14.35 ]
= = = 41.466 41.466 41.466
Comments