4. The equation for the velocity of a car is given as
Y = √𝑥 + 1𝑥
Use the trapezium rule, Simpson’s rule and the mid ordinate rule ( with a suitable number of intervals ) to find the distance travelled between 1 and 6 seconds.
Compare your answers to the value given by the definite integral and comment on the accuracy of the numerical methods.
"\\displaystyle{\\int^{6}_{1}}x\\sqrt{x+1}dx=\\frac{(x+1)^{3\/2}(3x-2)}{15}|^6_1="
"=\\frac{(6+1)^{3\/2}(3\\cdot6-2)}{15}-\\frac{(1+1)^{3\/2}(3-2)}{15}=39.13"
Trapezium rule:
"\\displaystyle{\\int^{x_n}_{x_0}}f(x)dx=\\frac{1}{2}h[y_0+y_n+2(y_1+y_2+...y_n)]"
Let "h=\\Delta x=1\\ sec" , then:
"y_0=f(1)=\\sqrt{2}=1.41"
"y_1=f(2)=2\\sqrt{3}=3.46"
"y_2=f(3)=6"
"y_3=f(4)=4\\sqrt{5}=8.94"
"y_4=f(5)=5\\sqrt{6}=12.25"
"y_5=f(6)=6\\sqrt{7}=15.87"
"\\displaystyle{\\int^{6}_{1}}x\\sqrt{x+1}dx=\\frac{1}{2}[1.41+15.87+2(3.46+6+8.94+12.25)]=39.29"
Accuracy:
"\\varepsilon=39.29-39.13=0.16"
Simpson’s rule:
"\\displaystyle{\\int^{x_n}_{x_0}}f(x)dx=\\frac{1}{3}h[y_0+4y_1+2y_2+4y_3+2y_4+...+4y_{n-1}+y_n]"
In Simpson's Rule, n must be even.
Let n=10, then:
"h=0.5"
"y_0=f(1)=1.41"
"y_1=f(1.5)=1.5\\sqrt{2.5}=2.37"
"y_2=f(2)=3.46"
"y_3=f(2.5)=2.5\\sqrt{3.5}=4.68"
"y_4=f(3)=6"
"y_5=f(3.5)=3.5\\sqrt{4.5}=7.42"
"y_6=f(4)=8.94"
"y_7=f(4.5)=4.5\\sqrt{5.5}=10.55"
"y_8=f(5)=12.25"
"y_9=f(5.5)=5.5\\sqrt{6.5}=14.02"
"y_{10}=f(6)=15.87"
"\\displaystyle{\\int^{6}_{1}}x\\sqrt{x+1}dx=\\frac{0.5}{3}(1.41+4\\cdot2.37+2\\cdot3.46+4\\cdot4.68+2\\cdot6+"
"+4\\cdot7.42+2\\cdot8.94+4\\cdot10.55+2\\cdot12.25+4\\cdot14.02+15.87)=39.12"
Accuracy:
"\\varepsilon=39.13-39.12=0.01"
Mid ordinate rule:
for n=5, h=1
"\\displaystyle{\\int^{6}_{1}}x\\sqrt{x+1}dx=h(y(1.5)+y(2.5)+y(3.5)+y(4.5)+y(5.5))="
"=2.27+4.68+7.42+10.55+14.02=38.94"
Accuracy:
"\\varepsilon=39.13-38.94=0.16"
So, in this case, the best accuracy is for Simpson’s rule.
Comments
Leave a comment