Question #189886

Use Simpson's Rule to estimate  ∫_0^2▒1/8 e^(x^2 ) dx with a maximum error of 0.1


1
Expert's answer
2021-05-13T12:34:49-0400

Given,f(x)=ex28.Exact value,02ex28dx=2.0 (2one decimal place)By using simpson’s rule, the approximate value isS4S4=Δx3[f(x0)+4f(x1)+2f(x2)+4f(x3)+f(x4)]where x0=0,x1=0.5,x2=1,x3=1.5,x4=2,n=4,Δx=ban=204=0.5S4=13[18+4(e0.528)+2(e8)+4(e1.528)+(e48)]=2.1 (2one decimal place)Error0.1exactapprox=2.05662.16920.1Given, f(x)=\frac{e^{x^2}}{8}.\newline Exact\space value, \int_0^2\frac{e^{x^2}}{8}dx=2.0\space (2 \text{one decimal place})\newline \text{By using simpson's rule, the approximate value is} S_4\newline S_4=\frac{\Delta x}{3}[f(x_0)+4f(x_1)+2f(x_2)+4f(x_3)+f(x_4)]\newline where\space x_0=0, x_1=0.5, x_2=1,x_3=1.5, x_4=2, n=4, \Delta x=\frac{b-a}{n}=\frac{2-0}{4}=0.5\newline S_4=\frac{1}{3}[\frac{1}{8}+4(\frac{e^{0.5^2} }{8})+2(\frac{e}{8})+4(\frac{e^{1.5^2}}{8})+ (\frac{e^4}{8})]\newline =2.1 \space (2 \text{one decimal place}) \newline Error\leq 0.1\newline |exact-approx|=|2.0566-2.1692|\leq 0.1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS