Question #158751

Given that y' = x+y^2, y(0)=1, find y(0.2), using the backward Euler’s method.


1
Expert's answer
2021-02-02T05:25:57-0500

Given y=x+y2,y(0)=1,y'=x+y^2, y(0)=1, find y(0.2)y(0.2) , using the backward Euler's method.

Solution:

Backward difference approximation for first derivative:

yy' ynyn1h\approx \frac{y_n-y_{n-1}}{h} , h=xnxn1h=x_n-x_{n-1}

x0=0,x1=0.2x_0=0, x_1=0.2

h=xnxn1=x1x0=0.20=0.2h=x_n-x_{n-1}=x_1-x_0=0.2-0=0.2

yn=yn1+hyny_n=y_{n-1}+hy'_n , yn=f(yn,xn)=xn+yn2y'_n=f(y_n,x_n)=x_n+y_n^2

y0=y(x0)=y(0)=1;y_0=y(x_0)=y(0)=1; y1=y(x1)=y(0.2)y_1=y(x_1)=y(0.2)

y1=y0+hy1=y0+h(x1+y12)=1+0.2(0.2+12)=1.24y_1=y_0+hy'_1=y_0+h(x_1+y_1^2)=1+0.2(0.2+1^2)=1.24

Answer: y(0.2)=1.24.y(0.2)=1.24.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS