Given data has unequal intervals, hence we use Lagrange's interpolation formula to find the polynomial f(x) that fit for the data and find f'(5). The Lagrange's interpolation formula is given by,
y=f(x)=(x0−x1)(x0−x2)⋯(x0−xn)(x−x1)(x−x2)⋯(x−xn)⋅y0 +(x1−x0)(x1−x2)⋯(x1−xn)(x−x0)(x−x2)⋯(x−xn)⋅y1+⋯+ (xn−x0)(xn−x2)⋯(xn−xn−1)(x−x0)(x−x1)⋯(x−xn−1)⋅yn
Here,
x0=1,x1=3,x2=4,x3=6;y0=14,y1=2,y2=8,y3=9.
f(x)=(−2)(−3)(−5)(x−3)(x−4)(x−6)⋅14+ (2)(−1)(−3)(x−1)(x−4)(x−6)⋅2+ (3)(1)(−2)(x−1)(x−3)(x−6)⋅4+ (5)(3)(2)(x−1)(x−3)(x−4)⋅9
=15−7(x3−13x2+54x−72)+ 31(x3−11x2+34x−24)− 34(x3−10x2+27x−18)+ 103(x3−8x2+19x−12)
This reduces to the polynomial,
f(x)=−61(7x3−80x2+265x−276)
Differentiating with respect to 'x',
f′(x)=−61(21x2−160x+265)
Therefore, f′(5)=−61(21⋅52−160⋅5+265)=35=1.6667
Comments