ANSWER: "f(4)=369, f'(4)=344"
EXPLANATION:
"f(x)=a_4x^4+a_3x^3+a_2x^2+a_1x+a_0=x^4+2x^3-x^2+1"
To calculate "f(4)" , we represent the polynomial "f" in the form "f(x)=(x-4)(b_3x^3+b_2x^2+b_1x+b_0)+ r" , using the Horner's method.
"{ b }_{ 3 }={ a }_{ 4 },\\quad { b }_{ k-1 }=4{ b }_{ k }+a_{ k },\\quad k=3,2,1,\\quad r=4{ b }_{ 0 }+{ a }_{ 0 }"
Thus, we obtain "{ b }_{ 3 }=1\\rightarrow { b }_{ 2 }=4\\cdot 1+2=6\\quad \\rightarrow { b }_{ 1 }=4\\cdot 6-1=23\\rightarrow"
"\\rightarrow { b }_{ 0 }=4\\cdot 23+0=\\rightarrow r=4\\cdot 92+1=369, r=f(4)"
Similarly: "f'(x)={ 4x }^{ 3 }{ +6x }^{ 2 }-2{ x }^{ \\ \\ }=a_3x^3+a_2x^2+a_1x+a_0=" "=(x-4)(b_2x^2+b_1x+b_0)+ r"
"{ b }_{ 2 }=4\\rightarrow { b }_{ 1}=4\\cdot4+6=22\\quad \\rightarrow { b }_{ 0 }=4\\cdot 22 -2=86\\rightarrow"
"=\\rightarrow r=4\\cdot 86+0=344, r=f'(4)=344"
Comments
Leave a comment