x 1.8 1.9 2.0 2.1 2.2
f(x) 10.8894 12.7032 14.7787 17.1489 19.8550
to find f''(2.0) using Central Difference Formula
"f'(x)=[f(x+h)-f(x-h)]\/2h" or"f'(x)=[f(x+h)-f(x)]\/h"
"f(x)=xe^2\\\\\n\nf'(x)=xe^x+e^x\\\\\nf''(x)=2e^x+xe^x\\\\\nf'''(x)=3e^x+xe^x\\\\\nf^4(x)=4e^x+xe^x"
given "x=2.0 ;h=0.1; h=0.2"
we have
"f''(x)=[f(x+h)-2f(x)+f(x-h)]\/h^2"
hence
"f''(2.0)=[f(2.1)-2f(2.0)+f(1.9)]\/0.1^2\\\\\nf''(2.0)=[17.1489-2(14.7787)+12.7032]\/0.01\\\\\nf''(2.0)=29.47"
finding the approximated error (T.E)
error at h=0.1
"O(h^2)=(h^2\/12)|-f^4(h)|\\\\\n=(0.01\/12)|-(4e^x+xe^x)|\\\\\n=(0.01\/12)|-(4.4206837+0.1105171)|\\\\\n=0.003776"
error at h=0.01
"O(h^2)=(h^2\/12)|-f^4(h)|\\\\\n=(0.0001\/12)|-(4.0402007+0.0101005)|\\\\\n=(0.0001\/12)|-4.0503012|\\\\\n=0.000033752"
to find actual error
at h=0.1
"=|1-[he^h+h*exp(-h)]\/h^2|\\\\\n=|1-[0.1105171+0.0904837]\/0.01|\\\\\n=19.10008"
at h=0.01
"=|1-[he^h+h*exp(-h)]\/h^2|\\\\\n=|1-[0.0101005+0.009900498]\/0.0001|\\\\\n=199.00998"
Comments
Leave a comment