Answer to Question #111446 in Quantitative Methods for Anju Jayachandran

Question #111446
From the values of f(x) = xex given in the table
x 1.8 1.9 2.0 2.1 2.2
f(x) 10.8894 12.7032 14.7787 17.1489 19.8550
find f
00(2.0) using the central difference formula of O(h
2
) for h = 0.1 and h = 0.2.
Calculate T.E. and actual error.
1
Expert's answer
2020-04-23T18:24:23-0400

x 1.8 1.9 2.0 2.1 2.2

f(x) 10.8894 12.7032 14.7787 17.1489 19.8550

to find f''(2.0) using Central Difference Formula


f(x)=[f(x+h)f(xh)]/2hf'(x)=[f(x+h)-f(x-h)]/2h orf(x)=[f(x+h)f(x)]/hf'(x)=[f(x+h)-f(x)]/h

f(x)=xe2f(x)=xex+exf(x)=2ex+xexf(x)=3ex+xexf4(x)=4ex+xexf(x)=xe^2\\ f'(x)=xe^x+e^x\\ f''(x)=2e^x+xe^x\\ f'''(x)=3e^x+xe^x\\ f^4(x)=4e^x+xe^x

given x=2.0;h=0.1;h=0.2x=2.0 ;h=0.1; h=0.2

we have

f(x)=[f(x+h)2f(x)+f(xh)]/h2f''(x)=[f(x+h)-2f(x)+f(x-h)]/h^2

hence

f(2.0)=[f(2.1)2f(2.0)+f(1.9)]/0.12f(2.0)=[17.14892(14.7787)+12.7032]/0.01f(2.0)=29.47f''(2.0)=[f(2.1)-2f(2.0)+f(1.9)]/0.1^2\\ f''(2.0)=[17.1489-2(14.7787)+12.7032]/0.01\\ f''(2.0)=29.47


finding the approximated error (T.E)

error at h=0.1

O(h2)=(h2/12)f4(h)=(0.01/12)(4ex+xex)=(0.01/12)(4.4206837+0.1105171)=0.003776O(h^2)=(h^2/12)|-f^4(h)|\\ =(0.01/12)|-(4e^x+xe^x)|\\ =(0.01/12)|-(4.4206837+0.1105171)|\\ =0.003776


error at h=0.01

O(h2)=(h2/12)f4(h)=(0.0001/12)(4.0402007+0.0101005)=(0.0001/12)4.0503012=0.000033752O(h^2)=(h^2/12)|-f^4(h)|\\ =(0.0001/12)|-(4.0402007+0.0101005)|\\ =(0.0001/12)|-4.0503012|\\ =0.000033752

to find actual error

at h=0.1

=1[heh+hexp(h)]/h2=1[0.1105171+0.0904837]/0.01=19.10008=|1-[he^h+h*exp(-h)]/h^2|\\ =|1-[0.1105171+0.0904837]/0.01|\\ =19.10008

at h=0.01

=1[heh+hexp(h)]/h2=1[0.0101005+0.009900498]/0.0001=199.00998=|1-[he^h+h*exp(-h)]/h^2|\\ =|1-[0.0101005+0.009900498]/0.0001|\\ =199.00998


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment