The LU decomposition A = L U A=LU A = LU of the given matrix is:
A = [ 1 − 1 4 2 9 8 6 5 2 ] = [ 1 0 0 2 1 0 6 a 1 ] [ 1 − 1 4 0 b 0 0 0 c ] A=\begin{bmatrix}
1 & -1&4 \\
2 &9&8\\
6&5&2
\end{bmatrix}=
\begin{bmatrix}
1 & 0&0 \\
2 & 1&0\\
6&a&1
\end{bmatrix}\begin{bmatrix}
1 & -1&4 \\
0 & b&0\\
0&0&c
\end{bmatrix} A = ⎣ ⎡ 1 2 6 − 1 9 5 4 8 2 ⎦ ⎤ = ⎣ ⎡ 1 2 6 0 1 a 0 0 1 ⎦ ⎤ ⎣ ⎡ 1 0 0 − 1 b 0 4 0 c ⎦ ⎤
-2+b=9 -6+11a=5 24+c=2
b=11 a=1 c=-22
A = [ 1 0 0 2 1 0 6 1 1 ] [ 1 − 1 4 0 11 0 0 0 − 22 ] = L U A=
\begin{bmatrix}
1 & 0&0 \\
2 & 1&0\\
6&1&1
\end{bmatrix}\begin{bmatrix}
1 & -1&4 \\
0 & 11&0\\
0&0&-22
\end{bmatrix}=LU A = ⎣ ⎡ 1 2 6 0 1 1 0 0 1 ⎦ ⎤ ⎣ ⎡ 1 0 0 − 1 11 0 4 0 − 22 ⎦ ⎤ = LU
Hence, the inverse of the matrix is A − 1 = U − 1 L − 1 A^{-1}=U^{-1}L^{-1} A − 1 = U − 1 L − 1
Since U and L are already in upper and lower triangular form, it is easy to find their inverses using Gauss-Jordan elimination.
Inverse of L
[ 1 0 0 ∣ 1 0 0 2 1 0 ∣ 0 1 0 6 1 1 ∣ 0 0 1 ] \begin{bmatrix}
1 & 0&0 |1&0&0\\
2 &1&0|0&1&0\\
6&1&1|0&0&1
\end{bmatrix} ⎣ ⎡ 1 2 6 0 1 1 0∣1 0∣0 1∣0 0 1 0 0 0 1 ⎦ ⎤
IIr+Ir(-2)
IIIr+Ir(-6)
[ 1 0 0 ∣ 1 0 0 0 1 0 ∣ − 2 1 0 0 1 1 ∣ − 6 0 1 ] \begin{bmatrix}
1 &0&0|\quad1&0&0\\
0 &1&0|-2&1&0\\
0&1&1|-6&0&1
\end{bmatrix} ⎣ ⎡ 1 0 0 0 1 1 0∣ 1 0∣ − 2 1∣ − 6 0 1 0 0 0 1 ⎦ ⎤
IIIr+IIr(-1)
[ 1 0 0 ∣ 1 0 0 0 1 0 ∣ − 2 1 0 0 0 1 ∣ − 4 − 1 1 ] \begin{bmatrix}
1 &0&0 |1&0&0\\
0 &1&\quad0 |-2&1&0\\
0&0&\quad1|-4&-1&1
\end{bmatrix} ⎣ ⎡ 1 0 0 0 1 0 0∣1 0∣ − 2 1∣ − 4 0 1 − 1 0 0 1 ⎦ ⎤
Inverse of U:
[ 1 − 1 4 ∣ 1 0 0 0 11 0 ∣ 0 1 0 0 1 − 22 ∣ 0 0 1 ] \begin{bmatrix}
1 & -1&\quad4 |1&0&0\\
0 &11&\quad0 |0&1&0\\
0&1&-22|0&0&1
\end{bmatrix} ⎣ ⎡ 1 0 0 − 1 11 1 4∣1 0∣0 − 22∣0 0 1 0 0 0 1 ⎦ ⎤
IIr⋅ ( 1 11 ) \cdot(\frac{1}{11}) ⋅ ( 11 1 )
[ 1 − 1 4 ∣ 1 0 0 0 1 0 ∣ 0 1 11 0 0 1 − 22 ∣ 0 0 1 ] \begin{bmatrix}
1 & -1&\quad4 |1&0&0\\
0 &1&\quad0 |0&\frac{1}{11}&0\\
0&1&-22|0&0&1
\end{bmatrix} ⎣ ⎡ 1 0 0 − 1 1 1 4∣1 0∣0 − 22∣0 0 11 1 0 0 0 1 ⎦ ⎤
IIIr+IIr(-1)
[ 1 − 1 4 ∣ 1 11 − 1 11 2 11 0 1 0 ∣ 0 1 11 0 0 0 − 22 ∣ 0 − 1 11 1 ] \begin{bmatrix}
1 & -1&\quad4 |\frac{1}{11}&-\frac{1}{11}&\frac{2}{11}\\
0 &1&\quad0 |0&\frac{1}{11}&0\\
0&0&-22|0&-\frac{1}{11}&1
\end{bmatrix} ⎣ ⎡ 1 0 0 − 1 1 0 4∣ 11 1 0∣0 − 22∣0 − 11 1 11 1 − 11 1 11 2 0 1 ⎦ ⎤
IIIr⋅ ( − 1 22 ) \cdot(-\frac{1}{22}) ⋅ ( − 22 1 )
Ir+IIr+IIIr(-4)
[ 1 0 0 ∣ 1 1 11 2 11 0 1 0 ∣ 0 1 11 0 0 0 1 ∣ 0 0 − 1 22 ] \begin{bmatrix}
1 & 0&\quad0 |1&\frac{1}{11}&\frac{2}{11}\\
0 &1&\quad0 |0&\frac{1}{11}&0\\
0&0&1|0&0&-\frac{1}{22}
\end{bmatrix} ⎣ ⎡ 1 0 0 0 1 0 0∣1 0∣0 1∣0 11 1 11 1 0 11 2 0 − 22 1 ⎦ ⎤
Hence,
A − 1 = U − 1 L − 1 = = [ 1 1 11 2 11 0 1 11 0 0 0 − 1 22 ] [ 1 0 0 − 2 1 0 − 4 − 1 1 ] = = [ 1 11 − 1 11 2 11 − 2 11 1 11 0 2 11 1 22 − 1 22 ] A^{-1}=U^{-1}L^{-1}=\\=\begin{bmatrix}
1&\frac{1}{11}&\frac{2}{11}\\
0&\frac{1}{11}&0\\
0&0&-\frac{1}{22}
\end{bmatrix}
\begin{bmatrix}
1&0&0\\
-2&1&0\\
-4&-1&1
\end{bmatrix}=\\
=
\begin{bmatrix}
\frac{1}{11}&-\frac{1}{11}&\frac{2}{11}\\
-\frac{2}{11}&\frac{1}{11}&0\\
\frac{2}{11}&\frac{1}{22}&-\frac{1}{22}
\end{bmatrix} A − 1 = U − 1 L − 1 = = ⎣ ⎡ 1 0 0 11 1 11 1 0 11 2 0 − 22 1 ⎦ ⎤ ⎣ ⎡ 1 − 2 − 4 0 1 − 1 0 0 1 ⎦ ⎤ = = ⎣ ⎡ 11 1 − 11 2 11 2 − 11 1 11 1 22 1 11 2 0 − 22 1 ⎦ ⎤
Comments