Question #110542
Find the inverse of the matrix


1 −1 4
2 9 8
6 5 2

 using LU decomposition method.
1
Expert's answer
2020-04-21T15:32:59-0400


The LU decomposition A=LUA=LU  of the given matrix is:


A=[114298652]=[1002106a1][1140b000c]A=\begin{bmatrix} 1 & -1&4 \\ 2 &9&8\\ 6&5&2 \end{bmatrix}= \begin{bmatrix} 1 & 0&0 \\ 2 & 1&0\\ 6&a&1 \end{bmatrix}\begin{bmatrix} 1 & -1&4 \\ 0 & b&0\\ 0&0&c \end{bmatrix}

-2+b=9 -6+11a=5 24+c=2

b=11 a=1 c=-22

A=[100210611][11401100022]=LUA= \begin{bmatrix} 1 & 0&0 \\ 2 & 1&0\\ 6&1&1 \end{bmatrix}\begin{bmatrix} 1 & -1&4 \\ 0 & 11&0\\ 0&0&-22 \end{bmatrix}=LU

Hence, the inverse of the matrix is A1=U1L1A^{-1}=U^{-1}L^{-1}

Since U and L are already in upper and lower triangular form, it is easy to find their inverses using Gauss-Jordan elimination.

Inverse of L


[100100210010611001]\begin{bmatrix} 1 & 0&0 |1&0&0\\ 2 &1&0|0&1&0\\ 6&1&1|0&0&1 \end{bmatrix}

IIr+Ir(-2)

IIIr+Ir(-6)

[100100010210011601]\begin{bmatrix} 1 &0&0|\quad1&0&0\\ 0 &1&0|-2&1&0\\ 0&1&1|-6&0&1 \end{bmatrix}

IIIr+IIr(-1)

[100100010210001411]\begin{bmatrix} 1 &0&0 |1&0&0\\ 0 &1&\quad0 |-2&1&0\\ 0&0&\quad1|-4&-1&1 \end{bmatrix}

Inverse of U:

[11410001100100122001]\begin{bmatrix} 1 & -1&\quad4 |1&0&0\\ 0 &11&\quad0 |0&1&0\\ 0&1&-22|0&0&1 \end{bmatrix}

IIr(111)\cdot(\frac{1}{11})

[114100010011100122001]\begin{bmatrix} 1 & -1&\quad4 |1&0&0\\ 0 &1&\quad0 |0&\frac{1}{11}&0\\ 0&1&-22|0&0&1 \end{bmatrix}

IIIr+IIr(-1)

[11411111121101001110002201111]\begin{bmatrix} 1 & -1&\quad4 |\frac{1}{11}&-\frac{1}{11}&\frac{2}{11}\\ 0 &1&\quad0 |0&\frac{1}{11}&0\\ 0&0&-22|0&-\frac{1}{11}&1 \end{bmatrix}


IIIr(122)\cdot(-\frac{1}{22})

Ir+IIr+IIIr(-4)


[10011112110100111000100122]\begin{bmatrix} 1 & 0&\quad0 |1&\frac{1}{11}&\frac{2}{11}\\ 0 &1&\quad0 |0&\frac{1}{11}&0\\ 0&0&1|0&0&-\frac{1}{22} \end{bmatrix}

Hence,

A1=U1L1==[11112110111000122][100210411]==[1111112112111110211122122]A^{-1}=U^{-1}L^{-1}=\\=\begin{bmatrix} 1&\frac{1}{11}&\frac{2}{11}\\ 0&\frac{1}{11}&0\\ 0&0&-\frac{1}{22} \end{bmatrix} \begin{bmatrix} 1&0&0\\ -2&1&0\\ -4&-1&1 \end{bmatrix}=\\ = \begin{bmatrix} \frac{1}{11}&-\frac{1}{11}&\frac{2}{11}\\ -\frac{2}{11}&\frac{1}{11}&0\\ \frac{2}{11}&\frac{1}{22}&-\frac{1}{22} \end{bmatrix}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS