The LU decomposition A=LU of the given matrix is:
A=⎣⎡126−195482⎦⎤=⎣⎡12601a001⎦⎤⎣⎡100−1b040c⎦⎤
-2+b=9 -6+11a=5 24+c=2
b=11 a=1 c=-22
A=⎣⎡126011001⎦⎤⎣⎡100−111040−22⎦⎤=LU
Hence, the inverse of the matrix is A−1=U−1L−1
Since U and L are already in upper and lower triangular form, it is easy to find their inverses using Gauss-Jordan elimination.
Inverse of L
⎣⎡1260110∣10∣01∣0010001⎦⎤
IIr+Ir(-2)
IIIr+Ir(-6)
⎣⎡1000110∣10∣−21∣−6010001⎦⎤
IIIr+IIr(-1)
⎣⎡1000100∣10∣−21∣−401−1001⎦⎤
Inverse of U:
⎣⎡100−11114∣10∣0−22∣0010001⎦⎤
IIr⋅(111)
⎣⎡100−1114∣10∣0−22∣001110001⎦⎤
IIIr+IIr(-1)
⎣⎡100−1104∣1110∣0−22∣0−111111−11111201⎦⎤
IIIr⋅(−221)
Ir+IIr+IIIr(-4)
⎣⎡1000100∣10∣01∣011111101120−221⎦⎤
Hence,
A−1=U−1L−1==⎣⎡10011111101120−221⎦⎤⎣⎡1−2−401−1001⎦⎤==⎣⎡111−112112−1111112211120−221⎦⎤
Comments