Question #110536
Use Euler’s method to solve the I.V.P.
y'=(x-y)/2, on [0,3], with y(0) = 1, and h = 0.5
1
Expert's answer
2020-04-21T16:51:40-0400

Given the initial value problem, y=xy2y'=\dfrac{x-y}{2} with initial condition y(0)=1y(0)=1.

The Euler's method states that,

yn+1=yn+hf(xn,yn)y_{n+1} = y_{n}+h\cdot f(x_{n},y_{n}), where xn+1=xn+hx_{n+1} = x_{n}+h.

Here, h=0.5,x0=0,y0=1,f(x,y)=y=xy2h = 0.5, x_{0} = 0, y_{0} = 1, f(x,y) = y' = \dfrac{x - y}{2} .

Step 1:

x1=x0+h=0.5y1=y(0.5)=y0+hf(x0,y0)=1+0.5(012)=0.75x_{1} = x_{0} + h = 0.5\\ y_{1}=y(0.5)=y_{0}+h\cdot f(x_{0},y_{0})\\ = 1+ 0.5 \left(\dfrac{0-1}{2}\right) = 0.75

Step 2:

x2=x1+h=1y2=y(1)=y1+hf(x1,y1)=0.75+0.5(0.50.752)=0.6875x_{2} = x_{1} + h = 1\\ y_{2}=y(1)=y_{1}+h\cdot f(x_{1},y_{1})\\ = 0.75+ 0.5 \left(\dfrac{0.5-0.75}{2}\right) = 0.6875

Step 3:

x3=x2+h=1.5y3=y(1.5)=y2+hf(x2,y2)=0.6875+0.5(10.68752)=0.765625x_{3} = x_{2} + h = 1.5\\ y_{3}=y(1.5)=y_{2}+h\cdot f(x_{2},y_{2})\\ = 0.6875 + 0.5 \left(\dfrac{1-0.6875}{2}\right) = 0.765625

Step 4:

x4=x3+h=2y4=y(2)=y3+hf(x3,y3)=0.765625+0.5(1.50.7656252)=0.94921875x_{4} = x_{3} + h = 2\\ y_{4}=y(2)=y_{3}+h\cdot f(x_{3},y_{3})\\ = 0.765625 + 0.5 \left(\dfrac{1.5-0.765625}{2}\right) = 0.94921875

Step 5:

x5=x4+h=2.5y5=y(2.5)=y4+hf(x4,y4)=0.94921875+0.5(20.949218752)=1.2119140625x_{5} = x_{4} + h = 2.5\\ y_{5}=y(2.5)=y_{4}+h\cdot f(x_{4},y_{4})\\ = 0.94921875 + 0.5 \left(\dfrac{2-0.94921875}{2}\right)\\ = 1.2119140625


Step 6:

x6=x5+h=3y6=y(3)=y5+hf(x5,y5)=1.2119140625+0.5(2.51.21191406252)=1.533935546875x_{6} = x_{5} + h = 3\\ y_{6}=y(3)=y_{5}+h\cdot f(x_{5},y_{5})\\ = 1.2119140625 + 0.5 \left(\dfrac{2.5-1.2119140625}{2}\right)\\ = 1.533935546875


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS