The vertices of a triangle ΔABC are A(p,q) , B(r, s) ,C (u,v) . Assume that these
coordinates satisfy
⎧ 2p+3r+4u=0
⎩ 2q+3s+4v=0
and the origin O(0,0) lies in the interior
of ΔABC . If (area of ΔOBC )=r(area of ΔABC ), then r =
a) 2/9 b)4/9 c)2/7 d)3/7 e) 4/7
Comments
Leave a comment