"Question1\n\nGiven A= [\u25a0(2&2&1@1&3&1@1&2&2)] \n\n\n\n\n1.1 find the eigenvalues of A\n\n1.2. Determine an eigenvector for the eigenvalue = 5\n\n\n\nQuestion2\nA periodic function f(x) with period 2 \u03c0 is defined by :\n f(x)= [ (x+\u03c0)\/2 -\u03c0\u02c2 X\u02c2 0, (x-\u03c0)\/2 0\u02c2 X\u02c2 \u03c0]\n\nDetermine the Fourier series for the periodic function"
1.
"\\det(A-\\lambda I)=\\begin{vmatrix}\n 2-\\lambda & 2 & 1 \\\\\n 1 & 3-\\lambda & 1 \\\\\n 1 & 2 & 2-\\lambda \\\\\n\\end{vmatrix}=0"
"(2-\\lambda)^2(3-\\lambda)+2+2-3+\\lambda-4+2\\lambda-4+2\\lambda=0"
"(4-4\\lambda+\\lambda^2)(3-\\lambda)+5\\lambda-7=0"
"12-4\\lambda-12\\lambda+4\\lambda^2+3\\lambda^2-\\lambda^3+5\\lambda-7=0"
"-\\lambda^3+7\\lambda^2-11\\lambda+5=0"
"-\\lambda^2(\\lambda-1)+6\\lambda(\\lambda-1)-5(\\lambda-1)=0"
"-(\\lambda-1)^2(\\lambda-5)=0"
The roots are "\\lambda_1=1, \\lambda_2=1, \\lambda_3=5."
These are the eigenvalues.
"\\lambda=5"
"R_1=R_1\/(-3)"
"R_2=R_2-R_1"
"R_3=R_3-R_1"
"R_2=-3R_2\/4"
"R_1=R_1+2R_2\/3"
"R_3=R_3-8R_2\/3"
"\\begin{pmatrix}\n 1 & 0 & -1\\\\\n 0 & 1 & -1 \\\\\n 0 & 0 & 0\n\\end{pmatrix}\\begin{pmatrix}\n x_1\\\\\n x_2 \\\\\n x_3\n\\end{pmatrix}=\\begin{pmatrix}\n 0\\\\\n 0 \\\\\n 0\n\\end{pmatrix}"
If we take "x_3=t," then "x_1=t, x_2=t."
This is the eigenvector.
"\\lambda=1"
"\\begin{pmatrix}\n 2-\\lambda & 2 & 1 \\\\\n 1 & 3-\\lambda & 1 \\\\\n 1 & 2 & 2-\\lambda \\\\\n\\end{pmatrix}=\\begin{pmatrix}\n 1 & 2 & 1 \\\\\n 1 & 2 & 1 \\\\\n 1 & 2 & 1\n\\end{pmatrix}"
"R_2=R_2-R_1"
"\\begin{pmatrix}\n 1 & 2 & 1 \\\\\n 0 & 0 & 0 \\\\\n 1 & 2 & 1\n\\end{pmatrix}""R_3=R_3-R_1"
"\\begin{pmatrix}\n 1 & 2 & 1 \\\\\n 0 & 0 & 0 \\\\\n 0 & 0 & 0\n\\end{pmatrix}"
If we take "x_2=t, x_3=s," then "x_1=-2t-s."
"\\vec x=\\begin{pmatrix}\n -2t-s\\\\\n t\\\\\n s\n\\end{pmatrix}=\\begin{pmatrix}\n -2\\\\\n 1\\\\\n 0\n\\end{pmatrix}t+\\begin{pmatrix}\n -1\\\\\n 0\\\\\n 1\n\\end{pmatrix}s""\\vec u=\\begin{pmatrix}\n -2\\\\\n 1\\\\\n 0\n\\end{pmatrix}, \\vec w=\\begin{pmatrix}\n -1\\\\\n 0\\\\\n 1\n\\end{pmatrix}"
These are the eigenvectors.
2.
"=\\dfrac{2}{\\pi}\\displaystyle\\int_{-\\pi}^{0}\\dfrac{x+\\pi}{2}dx+\\dfrac{2}{\\pi}\\displaystyle\\int_{0}^{\\pi}\\dfrac{x-\\pi}{2}dx"
"=\\dfrac{2}{\\pi}[\\dfrac{x^2}{4}+\\dfrac{\\pi x}{2}]\\begin{matrix}\n 0 \\\\\n -\\pi & d\n\\end{matrix}+\\dfrac{2}{\\pi}[\\dfrac{x^2}{4}-\\dfrac{\\pi x}{2}]\\begin{matrix}\n \\pi \\\\\n 0\n\\end{matrix}"
"=\\dfrac{\\pi}{2}-\\dfrac{\\pi}{2}=0"
"=\\dfrac{1}{\\pi}\\displaystyle\\int_{-\\pi}^{0}\\dfrac{x+\\pi}{2}\\cos{nx}dx+\\dfrac{1}{\\pi}\\displaystyle\\int_{0}^{\\pi}\\dfrac{x-\\pi}{2}\\cos{nx}dx"
"=-\\dfrac{\\cos{\\pi n}-1}{2\\pi n^2}+\\dfrac{\\cos{\\pi n}-1}{2\\pi n^2}=0"
"=\\dfrac{1}{\\pi}\\displaystyle\\int_{-\\pi}^{0}\\dfrac{x+\\pi}{2}\\sin{nx}dx+\\dfrac{1}{\\pi}\\displaystyle\\int_{0}^{\\pi}\\dfrac{x-\\pi}{2}\\sin{nx}dx"
"=-\\dfrac{1}{2n}-\\dfrac{1}{2n}=-\\dfrac{1}{n}"
Comments
Leave a comment