Express 2x/ x2-1 in partial fractions and hence find the general solution of the differential equation dy/dx = 2xy / x2 - 1 expressing y explicitly in terms of x.
The given function "f(x)=\\frac{2x}{x^2-1}"
"\\frac{dy}{dx}=\\frac{2xy}{x^2-1}"
We can write it as,
"\\frac{dy}{y}=\\frac{2xdx}{x^2-1}"
let "x^2-1= t"
"2xdx=dt"
Hence,
"\\frac{dy}{y}=\\frac{dt}{t}"
Now, taking the integration of the above equation,
"\\int \\frac{dy}{y}=\\int \\frac{dt}{t}"
"\\Rightarrow \\ln y=\\ln t +c"
Now, substituting the value of t
"\\ln y = \\ln (x^2-1)+c"
Or, we can write it as,
"\\Rightarrow \\ln y -\\ln(x^2-1)=c"
"\\Rightarrow \\ln\\frac{y}{x^2-1}=c"
"\\Rightarrow \\frac{y}{x^2-1}=e^c"
Comments
Leave a comment