Question #223121

Express 2x/ x2-1 in partial fractions and hence find the general solution of the differential equation dy/dx = 2xy / x2 - 1 expressing y explicitly in terms of x.



1
Expert's answer
2021-09-16T00:49:38-0400

The given function f(x)=2xx21f(x)=\frac{2x}{x^2-1}

dydx=2xyx21\frac{dy}{dx}=\frac{2xy}{x^2-1}

We can write it as,

dyy=2xdxx21\frac{dy}{y}=\frac{2xdx}{x^2-1}

let x21=tx^2-1= t

2xdx=dt2xdx=dt

Hence,

dyy=dtt\frac{dy}{y}=\frac{dt}{t}

Now, taking the integration of the above equation,

dyy=dtt\int \frac{dy}{y}=\int \frac{dt}{t}

lny=lnt+c\Rightarrow \ln y=\ln t +c

Now, substituting the value of t

lny=ln(x21)+c\ln y = \ln (x^2-1)+c

Or, we can write it as,

lnyln(x21)=c\Rightarrow \ln y -\ln(x^2-1)=c


lnyx21=c\Rightarrow \ln\frac{y}{x^2-1}=c


yx21=ec\Rightarrow \frac{y}{x^2-1}=e^c


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS