The given function f(x)=x2−12x
dxdy=x2−12xy
We can write it as,
ydy=x2−12xdx
let x2−1=t
2xdx=dt
Hence,
ydy=tdt
Now, taking the integration of the above equation,
∫ydy=∫tdt
⇒lny=lnt+c
Now, substituting the value of t
lny=ln(x2−1)+c
Or, we can write it as,
⇒lny−ln(x2−1)=c
⇒lnx2−1y=c
⇒x2−1y=ec
Comments