"a_0=\\dfrac{2}{\\pi}\\displaystyle\\int_{-\\pi}^{\\pi}f(x)dx"
"=\\dfrac{2}{\\pi}\\displaystyle\\int_{-\\pi}^{0}\\dfrac{x+\\pi}{2}dx+\\dfrac{2}{\\pi}\\displaystyle\\int_{0}^{\\pi}\\dfrac{x-\\pi}{2}dx"
"=\\dfrac{2}{\\pi}[\\dfrac{x^2}{4}+\\dfrac{\\pi x}{2}]\\begin{matrix}\n 0 \\\\\n -\\pi & d\n\\end{matrix}+\\dfrac{2}{\\pi}[\\dfrac{x^2}{4}-\\dfrac{\\pi x}{2}]\\begin{matrix}\n \\pi \\\\\n 0\n\\end{matrix}"
"=\\dfrac{\\pi}{2}-\\dfrac{\\pi}{2}=0"
"=\\dfrac{1}{\\pi}\\displaystyle\\int_{-\\pi}^{0}\\dfrac{x+\\pi}{2}\\cos{nx}dx+\\dfrac{1}{\\pi}\\displaystyle\\int_{0}^{\\pi}\\dfrac{x-\\pi}{2}\\cos{nx}dx"
"=-\\dfrac{\\cos{\\pi n}-1}{2\\pi n^2}+\\dfrac{\\cos{\\pi n}-1}{2\\pi n^2}=0"
"=\\dfrac{1}{\\pi}\\displaystyle\\int_{-\\pi}^{0}\\dfrac{x+\\pi}{2}\\sin{nx}dx+\\dfrac{1}{\\pi}\\displaystyle\\int_{0}^{\\pi}\\dfrac{x-\\pi}{2}\\sin{nx}dx"
"=-\\dfrac{1}{2n}-\\dfrac{1}{2n}=-\\dfrac{1}{n}"
Comments
Leave a comment