Question #223175
Question2Aperiodicfunctionf(x)withperiod2πisdefinedby:f(x)=[(x+π)/2,π<x<0,(xπ)/2,0<x<π]DeterminetheFourierseriesfortheperiodicfunction.Question2 A \, periodic \,function\, f(x) \,with \,period \,2 π \,is \,defined\, by :\\ f(x)= [ (x+π)/2 , \, -π< x<0, \\(x-π)/2 , \, 0<x<π]\\ Determine \,the \,Fourier \,series \,for \,the \,periodic\, function.

1
Expert's answer
2021-08-05T11:04:14-0400

a0=2πππf(x)dxa_0=\dfrac{2}{\pi}\displaystyle\int_{-\pi}^{\pi}f(x)dx

=2ππ0x+π2dx+2π0πxπ2dx=\dfrac{2}{\pi}\displaystyle\int_{-\pi}^{0}\dfrac{x+\pi}{2}dx+\dfrac{2}{\pi}\displaystyle\int_{0}^{\pi}\dfrac{x-\pi}{2}dx

=2π[x24+πx2]0πd+2π[x24πx2]π0=\dfrac{2}{\pi}[\dfrac{x^2}{4}+\dfrac{\pi x}{2}]\begin{matrix} 0 \\ -\pi & d \end{matrix}+\dfrac{2}{\pi}[\dfrac{x^2}{4}-\dfrac{\pi x}{2}]\begin{matrix} \pi \\ 0 \end{matrix}

=π2π2=0=\dfrac{\pi}{2}-\dfrac{\pi}{2}=0



an=1πππf(x)cosnxdxa_n=\dfrac{1}{\pi}\displaystyle\int_{-\pi}^{\pi}f(x)\cos{nx}dx

=1ππ0x+π2cosnxdx+1π0πxπ2cosnxdx=\dfrac{1}{\pi}\displaystyle\int_{-\pi}^{0}\dfrac{x+\pi}{2}\cos{nx}dx+\dfrac{1}{\pi}\displaystyle\int_{0}^{\pi}\dfrac{x-\pi}{2}\cos{nx}dx

=cosπn12πn2+cosπn12πn2=0=-\dfrac{\cos{\pi n}-1}{2\pi n^2}+\dfrac{\cos{\pi n}-1}{2\pi n^2}=0



bn=1πππf(x)sinnxdxb_n=\dfrac{1}{\pi}\displaystyle\int_{-\pi}^{\pi}f(x)\sin{nx}dx

=1ππ0x+π2sinnxdx+1π0πxπ2sinnxdx=\dfrac{1}{\pi}\displaystyle\int_{-\pi}^{0}\dfrac{x+\pi}{2}\sin{nx}dx+\dfrac{1}{\pi}\displaystyle\int_{0}^{\pi}\dfrac{x-\pi}{2}\sin{nx}dx

=12n12n=1n=-\dfrac{1}{2n}-\dfrac{1}{2n}=-\dfrac{1}{n}




f(x)=n=11nsinnxf(x)=-\displaystyle\sum_{n=1}^{\infin}\dfrac{1}{n}\sin{nx}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS